-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathgeneral
executable file
·356 lines (355 loc) · 29.4 KB
/
general
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
https://codesachin.wordpress.com/2017/01/05/on-interpretable-models/
https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime
https://www.oreilly.com/ideas/ideas-on-interpreting-machine-learning
https://dataskeptic.com/blog/transcripts/2016/trusting-machine-learning-models-with-lime
https://shiring.github.io/machine_learning/2017/04/23/one_r
https://www.r-bloggers.com/explaining-complex-machine-learning-models-with-lime/
https://thecrimereport.org/2018/01/26/algorithms-and-justice-scrapping-the-black-box/
https://www.cmu.edu/news/stories/archives/2018/october/explainable-ai.html
http://www.imm.dtu.dk/~tobo/AI_chora2.pdf
https://journal.jp.fujitsu.com/en/2018/10/11/01/
https://link.springer.com/content/pdf/10.1007%2Fs00287-018-1102-5.pdf
https://www.parc.com/blog/explainable-ai-an-overview-of-parcs-cogle-project-with-darpa/
https://bdtechtalks.com/2018/10/15/kate-saenko-explainable-ai-deep-learning-rise/
https://www.ribbonfarm.com/2018/03/13/justifiable-ai/
https://pursuit.unimelb.edu.au/articles/what-were-you-thinking
https://which-50.com/autonomous-cars-present-new-challenges-for-explainable-ai/
https://tech.co/sexist-ai-doomed-reflect-worst-2018-10
https://www.cmo.com.au/article/648282/why-explainability-around-ai-gaining-ground/
https://www.kdnuggets.com/2018/10/enterprise-explainable-ai.html
https://www.research.ox.ac.uk/Article/2018-10-15-making-algorithms-accountable-and-explainable-the-need-for-a-legal-framework
https://which-50.com/autonomous-cars-present-new-challenges-for-explainable-ai/
https://www.hfsresearch.com/pointsofview/escape-the-black-box-take-steps-toward-explainable-ai-today-or-risk-damaging-your-business
https://ercim-news.ercim.eu/en112/r-i/can-we-trust-machine-learning-results-artificial-intelligence-in-safety-critical-decision-support
https://research.utwente.nl/en/publications/automated-failure-diagnosis-in-aviation-maintenance-using-explain
https://blogs.wsj.com/cio/tag/explainable-ai/
https://blog.goodaudience.com/holy-grail-of-ai-for-enterprise-explainable-ai-xai-6e630902f2a0
https://www.infosecurity-magazine.com/news/orgs-failing-tmachine-learning/
https://www.turing.ac.uk/news/can-justice-be-blind-when-it-comes-machine-learning
https://blog.acolyer.org/2018/08/13/delayed-impact-of-fair-machine-learning/
https://fairmlbook.org
https://www.linkedin.com/pulse/why-machine-learning-model-interpretability-big-deal-igor-korolev/
http://www.fatml.org
https://www.oreilly.com/ideas/why-its-hard-to-design-fair-machine-learning-models?utm_medium=social&utm_source=twitter.com&utm_campaign=awareness&utm_content=radar+content
https://christophm.github.io/interpretable-ml-book/intro.html
http://blog.datadive.net/interpreting-random-forests/
https://xai.world
https://medium.com/@BonsaiAI/explainable-ai-3-deep-explanations-approaches-to-xai-1807e251e537
https://towardsdatascience.com/decision-trees-understanding-explainable-ai-620fc37e598d
https://www.fico.com/blogs/analytics-optimization/4-analytic-predictions-for-2017/
https://hci-kdd.org/2017/10/09/transparency-trust-machine-learning-making-ai-interpretable-explainable/
https://www.nytimes.com/2017/11/21/magazine/can-ai-be-taught-to-explain-itself.html
https://www.linkedin.com/pulse/explainable-ai-understanding-black-box-machine-learning-singh/
http://www.sciencemag.org/news/2017/07/how-ai-detectives-are-cracking-open-black-box-deep-learning
https://blog.foretellix.com/2016/08/31/machine-learning-verification-and-explainable-ai/
https://trustable.ai/gdpr-impacts-machine-learning-applications/
https://www.cio.com/article/3234305/privacy/eu-privacy-law-says-companies-need-to-explain-the-algorithms-they-use.html
https://gdpr.report/news/2017/08/23/deep-learning-not-ai-future/
https://medium.com/trustableai/gdpr-and-its-impacts-on-machine-learning-applications-d5b5b0c3a815
https://simmachines.com/explainable-ai-is-responsible-ai/
https://www.it-finanzmagazin.de/xai-wissen-was-die-ki-wirklich-macht-kuenstliche-intelligenz-erklaerbar-67609/
https://blogs.wsj.com/cio/2016/12/06/capital-one-pursues-explainable-ai-to-guard-against-bias-in-models/
https://blogs.wsj.com/cio/2018/05/02/companies-grapple-with-ais-opaque-decision-making-process/
https://blogs.wsj.com/cio/2017/08/11/the-morning-download-darpa-orchestrates-effort-to-make-ai-explain-itself/
https://blogs.wsj.com/cio/2017/10/26/facing-growing-concern-over-ai-tech-firms-call-for-responsible-development/
https://blogs.wsj.com/cio/2017/08/10/inside-darpas-push-to-make-artificial-intelligence-explain-itself/
https://www.groundai.com/project/explanations-of-model-predictions-with-live-and-breakdown-packages/
https://lilianweng.github.io/lil-log/2017/08/01/how-to-explain-the-prediction-of-a-machine-learning-model.html#prediction-decomposition
https://pbiecek.github.io/DALEX_docs/index.html#introduction
https://pbiecek.github.io/breakDown/articles/break_caret.html
https://www.linkedin.com/pulse/explainable-ai-implications-compliance-gdpr-beyond-scott-zoldi/
https://towardsdatascience.com/human-interpretable-machine-learning-part-1-the-need-and-importance-of-model-interpretation-2ed758f5f476
https://www.oreilly.com/ideas/interpreting-predictive-models-with-skater-unboxing-model-opacity
https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/
http://danshiebler.com/2017-04-16-deep-taylor-lrp/
http://www.sciencemag.org/news/2017/07/how-ai-detectives-are-cracking-open-black-box-deep-learning
https://www.wired.com/story/why-ai-is-still-waiting-for-its-ethics-transplant/
https://venturebeat.com/2018/05/21/explainable-ai-could-reduce-the-impact-of-biased-algorithms/
https://optimizingmind.com/explainable-ai-demonstration/
https://www.economist.com/science-and-technology/2018/02/15/for-artificial-intelligence-to-thrive-it-must-explain-itself
https://hbr.org/2013/04/the-hidden-biases-in-big-data
https://www.nytimes.com/2017/11/21/magazine/can-ai-be-taught-to-explain-itself.html
https://www.wired.com/2016/04/google-ensures-services-almost-never-go/?mbid=nl_4616
https://www.computerworld.com.au/article/621059/google-research-chief-questions-value-explainable-ai/
https://www.delltechnologies.com/en-us/perspectives/explainable-ai-cracking-open-deep-learnings-black-box/
https://simplystatistics.org/2017/07/10/the-machines-learn-but-we-don-t/
https://www.weforum.org/agenda/2017/10/we-need-to-overcome-ais-inherent-human-bias/
https://www.axios.com/why-good-ai-needs-to-be-able-to-show-its-work-f360b149-b199-4f49-90ea-de16d9b4cd8b.html
https://www.forbes.com/sites/paulhsieh/2017/05/22/3-big-questions-about-ai-guided-medicine/#703267874f20
https://www.politico.com/newsletters/morning-ehealth/2018/05/01/ata-sees-physician-burnout-as-a-telemedicine-opportunity-199148
http://www.thefuturesociety.org/ethical-policy-risks-of-artificial-intelligence-in-healthcare/
https://www.oii.ox.ac.uk/blog/could-counterfactuals-explain-algorithmic-decisions-without-opening-the-black-box/
http://www.spiegel.de/netzwelt/web/explainable-ai-auf-der-cebit-2018-wie-tickt-eine-kuenstliche-intelligenz-a-1213016.html
https://medium.com/@eirinimalliaraki/toward-ethical-transparent-and-fair-ai-ml-a-critical-reading-list-d950e70a70ea
https://www.prnewswire.com/news-releases/partners-connected-health-and-hitachi-develop-an-explainable-ai-technology-to-help-doctors-predict-readmissions-and-improve-patient-outcomes-300570129.html
https://www.accenture.com/us-en/blogs/blogs-why-explainable-ai-must-central-responsible-ai
https://ai.intel.com/the-challenges-and-opportunities-of-explainable-ai/
https://connectedsocialmedia.com/16336/increasing-trust-in-ai-systems-through-explainability-intel-chip-chat-episode-573/
https://www.bbc.com/news/business-44466213
https://futureoflife.org/2018/02/13/transparent-interpretable-ai/?cn-reloaded=1
https://www.endgame.com/blog/technical-blog/prove-it-2018-wave-information-security-machine-learning
https://www.kdnuggets.com/2015/04/model-interpretability-neural-networks-deep-learning.html
https://www.mobihealthnews.com/content/optum-research-head-describes-ais-black-box-problem-and-its-impact-healthcare?mkt_tok=eyJpIjoiWlRBME5EQmtZak5sWldFMiIsInQiOiI2RjRxbHpcL25PQkxJQ3NENDYxR2hDTG5vVWdkOFB6cHh2NEpMN2ZCQWZEQmRkMHVIWDVyZWVKejRJb09Sa1kyeG9aaXhQQjdZWjMyNVwva2VjWGg2TmJwR2N2VFNJcms0a3VcL1FDQ2R1Mm96dUdvN25HWFNHamFlamdlK3lmQlhrNyJ9
https://medium.com/applied-data-science/new-r-package-the-xgboost-explainer-51dd7d1aa211
http://www.markstefik.com/?page_id=2262
http://web.engr.oregonstate.edu/~afern/
https://www.wired.com/story/why-ai-is-still-waiting-for-its-ethics-transplant/
http://openaccess.city.ac.uk/18660/
https://datafloq.com/read/algorithms-black-boxes-need-explainable-AI/2639
https://hbr.org/2018/05/how-health-care-changes-when-algorithms-start-making-diagnoses
https://disruptionhub.com/next-big-disruptive-trend-business-explainable-ai/
https://www.wsj.com/articles/career-of-the-future-robot-psychologist-1499605203
https://web.cs.ucla.edu/~guyvdb/code/
https://blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box-predictive-models.html
http://uc-r.github.io/dalex#local
https://www.washingtontimes.com/news/2018/jun/29/darpas-explainable-ai-a-common-sense-comfort-in-a-/
https://www.tractica.com/artificial-intelligence/explainable-ai-and-its-impact-on-ai-adoption/
https://www.business-science.io/business/2018/07/23/dalex-feature-interpretation.html
https://www.analyticsvidhya.com/blog/2017/06/building-trust-in-machine-learning-models/
https://blog.godatadriven.com/fairness-in-ml
https://blog.godatadriven.com/fairness-in-pytorch
https://people.csail.mit.edu/beenkim/papers/BeenK_FinaleDV_ICML2017_tutorial.pdf
https://thenextweb.com/artificial-intelligence/2018/09/12/mit-taught-a-neural-network-how-to-show-its-work/
https://github.com/yashpatel5400/interpretability
https://github.com/jphall663/awesome-machine-learning-interpretability
https://github.com/dongyp13/Robust-and-Explainable-Machine-Learning#interpretability
https://github.com/liupeng3425/interpretable-research
https://github.com/grazianomita/Model-Interpretability
https://github.com/dongyp13/Robust-and-Explainable-Machine-Learning#interpretability
https://law.yale.edu/system/files/area/center/isp/documents/law_and_artificial_intelligence_reading_group_syllabus-spring2018.pdf
https://www.analyticsvidhya.com/blog/2019/03/datahack-radio-interpretable-machine-learning-christoph-molnar/
https://singularityhub.com/2019/03/19/to-be-ethical-ai-must-become-explainable-how-do-we-get-there/#sm.0001pbmwwl82udh2ylz1ha6wqnrgu
https://www.forbes.com/sites/adrianbridgwater/2019/03/22/will-ai-cheats-outsmart-us/#10161802448f
https://www.lendacademy.com/podcast-192-douglas-merrill-of-zestfinance/
http://digitalhealthage.com/are-we-ready-for-radiologists-powered-by-ai-and-mistakes/
https://medium.com/predict/can-we-build-an-artificial-brain-network-using-nanoscale-magnets-1c0a925973ab
https://www.forbes.com/sites/tomdavenport/2019/03/18/explainable-ai-and-the-rebirth-of-rules/#17764fb439ae
https://users.cs.duke.edu/~cynthia/code.html
https://thecrimereport.org/2018/01/26/algorithms-and-justice-scrapping-the-black-box/
https://towardsdatascience.com/machine-learning-interpretability-techniques-662c723454f3
https://opendatascience.com/explainable-ai-from-prediction-to-understanding/
https://aibusiness.com/explainability-ai-regulation/
https://www.heinz.cmu.edu/media/2018/September/explainable-ai
https://www.the-future-of-commerce.com/2019/03/11/what-is-explainable-ai-xai/
https://www.capitalone.com/tech/machine-learning/an-integral-pragmatic-approach-to-explainable-ai
https://towardsdatascience.com/how-to-explain-any-machine-learning-model-prediction-30654b0c1c8
https://tech.economictimes.indiatimes.com/news/corporate/digite-aims-to-improve-it-services-firms-margin-using-explainable-ai-tool/68416528
https://insidehpc.com/2019/03/any-better-than-clever-hans-putting-ai-systems-to-the-test/
https://www.analyticsinsight.net/here-is-how-augmented-analytics-and-explainable-ai-will-cause-a-disruption-in-2019-beyond/
https://www.darpa.mil/news-events/2019-01-31
https://www.governmentciomedia.com/machine-learning-creating-crisis-science
https://arxiv.org/abs/1902.11035v1
https://github.com/ModelOriented/SAFE
https://milbankmonitor.com/the-security-threats-of-neural-networks-and-deep-learning-algorithms/28/02/2019/
https://redtailmedia.org/2018/10/29/a-peek-inside-a-darpa-xai-project-at-oregon-state-university/
https://ethical.institute/mle/12.html
https://medium.com/capital-one-tech/advancing-greater-fairness-and-explainability-for-ai-and-machine-learning-across-the-banking-6a71423476fe
https://www.proshareng.com/news/Tech%20Trends/An-Overview-of-AI-for-Wealth-Management-%E2%80%93-What%E2%80%99s-Possible-Today/43270
https://ctmfile.com/story/bi-2019-explainable-ai-natural-language-to-humanize-your-data-etc
https://thenewstack.io/explainable-ai-looking-into-the-black-box/
https://www.basistech.com/honest-ai/understanding-explainable-ai/
http://www.project-pulse.eu/using-ai-with-explainable-deep-learning-to-help-save-lives/
https://github.com/EthicalML/XAI
https://notepad.mmakowski.com/Tech/KDD%202018:%20Explainable%20Models%20for%20Healthcare%20AI
http://www.stat.ucla.edu/~tfwu//project_posts/iRCNN/
https://github.com/jphall663/awesome-machine-learning-interpretability
https://github.com/ankitbit/MAGMIL
https://github.com/zzzace2000/FIDO-saliency
https://github.com/antoinecarme/sklearn_explain
https://arxiv.org/abs/1711.04574
https://towardsdatascience.com/deepmind-combines-logic-and-neural-networks-to-extract-rules-from-noisy-data-2fbd0f6edfb7
https://arxiv.org/abs/1902.01876v1
https://sites.google.com/view/xai2019/home
https://venturebeat.com/2019/03/06/openai-and-google-detail-activation-atlases-a-technique-for-visualizing-ai-decision-making/
https://towardsdatascience.com/why-model-explainability-is-the-next-data-science-superpower-b11b6102a5e0
https://towardsdatascience.com/interpretable-ai-or-how-i-learned-to-stop-worrying-and-trust-ai-e61f9e8ee2c2
https://towardsdatascience.com/google-and-openai-help-you-see-what-neural-networks-see-77ec5fd9564a
https://www.geopoliticalmonitor.com/in-search-of-explainable-artificial-intelligence/
https://towardsdatascience.com/how-to-perform-explainable-machine-learning-classification-without-any-trees-873db4192c68
https://bdtechtalks.com/2019/03/11/openai-google-neural-networks-visualization/
https://www.analyticsindiamag.com/explainable-ai-is-driving-the-credit-analytics-market-now-says-mathieu-garnier-of-equifax/?
https://towardsdatascience.com/understand-how-your-tensorflow-model-is-making-predictions-d0b3c7e88500
https://www.linkedin.com/pulse/data-science-analytics-informatics-healthcare-life-korolev-do-phd/
https://www.sciencedaily.com/releases/2019/03/190312103643.htm
https://bdtechtalks.com/2019/01/10/darpa-xai-explainable-artificial-intelligence/
https://www.quantamagazine.org/been-kim-is-building-a-translator-for-artificial-intelligence-20190110/
http://www.sys-con.com/node/4367298
https://www.itproportal.com/features/cutting-through-the-ai-hype-explainable-ai-and-a-flexible-workforce/
https://www.forbes.com/sites/forbestechcouncil/2019/01/15/five-predictions-for-ai-in-marketing-in-2019/#8c10cff7efa6
https://phys.org/news/2019-01-ai-retailers-consumer.html
https://github.com/marcoancona/DeepExplain
https://github.com/tensorflow/tcav/
https://github.com/albermax/innvestigate
https://github.com/nyuvis/explanation_explorer
https://www.theverge.com/2019/1/17/18186674/daniel-chen-machine-learning-rule-of-law-economics-psychology-judicial-system-policy
https://venturebeat.com/2019/01/26/mit-csail-researchers-propose-automated-method-for-debiasing-ai-algorithms/
https://www.cnbc.com/2019/01/23/facebook-samsung-engineers-quit-to-form-ai-startup-fiddler-labs.html
https://www.brighttalk.com/webcast/16463/346891
https://www.vox.com/science-and-health/2019/1/23/18194717/alexandria-ocasio-cortez-ai-bias
https://www.mesalliance.org/2019/01/25/microstrategy-ai-strategies-becoming-a-necessity-more-explainable-ai-are-among-top-2019-trends-to-watch/
http://virtual-strategy.com/2019/01/23/executive-viewpoint-2019-prediction-tigergraph-big-data-analytics-and-explainable-ai/
https://www.zdnet.com/article/artificial-intelligence-will-become-the-next-new-human-right/
https://arxiv.org/html/1901.08813v1
https://www.mesalliance.org/2019/01/22/ai-2018-the-year-of-citizen-ai/
http://mil-embedded.com/news/charles-river-analytics-creates-tool-to-help-ai-communicate-effectively-with-humans/
https://www.timesofmalta.com/articles/view/20190120/life-features/explainable-ai.699695
https://www.nytimes.com/2017/12/20/upshot/algorithms-bail-criminal-justice-system.html
https://www.washingtonpost.com/gdpr-consent/?destination=%2fnews%2fmonkey-cage%2fwp%2f2016%2f10%2f17%2fcan-an-algorithm-be-racist-our-analysis-is-more-cautious-than-propublicas%2f%3fnoredirect%3don%26utm_term%3d.51e7d4145743&noredirect=on&utm_term=.7e8111db903c
https://www.cmswire.com/digital-workplace/ai-adoption-is-increasing-but-challenges-remain/
https://slides.com/ahmadadiga/session1-10-13-15-22-30-7-13-23#/
https://arxiv.org/abs/1902.00006v1
https://www.businesswire.com/news/home/20190204005511/en/Lazard-Add-Explainable-Artificial-Intelligence-XAI-Capability
https://bdtechtalks.com/2019/02/04/explainable-ai-gan-dissection-ibm-mit/
https://readwrite.com/2019/02/05/ai-should-be-reducing-bias-not-introducing-it-in-recruiting/
https://betanews.com/2019/02/05/rise-of-explainable-ai/
https://sdtimes.com/ai/can-developers-make-ais-black-box-transparent/
https://www.forbes.com/sites/forbestechcouncil/2019/02/07/why-you-should-or-should-not-trust-ai/#66cfebd8646f
https://www.meritalk.com/articles/when-the-stakes-are-high-will-people-trust-ai/
https://www.techcircle.in/2019/02/18/augmented-analytics-explainable-ai-have-potential-for-disruption-gartner
http://www.bankingexchange.com/news-feed/item/7785-why-explainable-ai-is-the-next-frontier-in-financial-crime-fighting?Itemid=259
http://www.cxotoday.com/story/gartner-identifies-top-10-data-and-analytics-technology-trends-for-2019/
https://arxiv.org/abs/1902.03501v1
https://www.dataiq.co.uk/articles/symptoms-and-solutions-to-machine-learning-bias
https://blogs.wsj.com/cio/tag/explainable-ai/
https://www.oreilly.com/ideas/ideas-on-interpreting-machine-learning
https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime
https://blog.goodaudience.com/holy-grail-of-ai-for-enterprise-explainable-ai-xai-6e630902f2a0
http://www.heatmapping.org/
https://arxiv.org/abs/1711.06104
https://www.linkedin.com/pulse/ai-silvie-spreeuwenberg/
https://www.computer.org/csdl/proceedings-article/hicss/2005/22680243a/12OmNvSKNOs
http://www.cs.tau.ac.il/~wolf/papers/a_formal_approach_to_explainability.pdf
https://www.nytimes.com/2018/01/25/opinion/artificial-intelligence-black-box.html
http://www.imm.dtu.dk/~tobo/AI_chora2.pdf
http://cdn.bdigital.org/PDF/BDC18/BDC18_ExplainableAI.pdf
http://aitechnologylaw.com/2018/12/explainable-ai-crucial-in-this-area-of-law/
https://www.meritalk.com/articles/ethics-a-crucial-link-in-dods-ai-strategy/
https://www.law360.com/lifesciences/articles/1131225/explainability-where-ai-and-liabilihttps://www.technative.io/why-its-important-to-create-a-movement-around-explainable-ai/
ty-meet
https://towardsdatascience.com/machine-learning-explainability-d6a3d198fd95
https://www.kaggle.com/learn/machine-learning-explainability
https://www.forbes.com/sites/forbestechcouncil/2019/02/22/explainable-ai-why-we-need-to-open-the-black-box/#721ef9e81717https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/#1d07df96756d
https://arxiv.org/html/1901.08813v2
https://tdwi.org/articles/2018/11/26/adv-all-3-signs-of-a-good-ai-model.aspx
https://www.prnewswire.com/news-releases/zestfinance-to-deliver-first-fully-explainable-artificial-intelligence-solution-for-credit-underwriting-with-microsoft-cloud-300768706.html
https://searchenterpriseai.techtarget.com/feature/Explainability-is-no-solution-to-problem-of-bias-in-AI
https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/#1d07df96756d
https://www.digitaltrends.com/digital-trends-live/ryan-welsh-explainable-ai-interview/
https://www.kdnuggets.com/2018/12/machine-learning-explainability-interpretability-ai.html
http://www.omidyar.com/sites/default/files/file_archive/Public%20Scrutiny%20of%20Automated%20Decisions.pdf
http://futureadvocacy.com/wp-content/uploads/2018/04/1804_26_FA_ETHICS_08-DIGITAL.pdf
https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/j.1740-9713.2016.00960.x
https://us.macmillan.com/books/9781250074317
http://michiganlawreview.org/regulating-black-box-medicine/
https://www.theverge.com/2018/3/21/17144260/healthcare-medicaid-algorithm-arkansas-cerebral-palsy
https://ainowinstitute.org/aap-toolkit.pdf
https://arxiv.org/pdf/1709.08568.pdf
https://towardsdatascience.com/explainable-ai-vs-explaining-ai-part-1-d39ea5053347
https://www.zdnet.com/article/capital-one-ai-chief-sees-path-to-explainable-ai/
https://www.kdnuggets.com/2018/12/explainable-ai-machine-learning.html
https://www.microsoft.com/en-us/research/video/the-emerging-theory-of-algorithmic-fairness/?_lrsc=797c06d3-50b3-44c3-823b-8b5a8ec36a07
https://medium.com/@QuantumBlack/ethics-of-ai-a-data-scientists-perspective-cb7cdb1c8392
https://www.dqindia.com/implementations-artificial-intelligence-2019/
https://towardsdatascience.com/interpretability-of-deep-learning-models-9f52e54d72ab
https://www.analyticsinsight.net/explainable-artificial-intelligence-the-magic-inside-the-black-box/
https://arxiv.org/abs/1804.06620v3
https://www.americanbanker.com/news/can-ais-black-box-problem-be-solved
https://medium.com/@ageitgey/natural-language-processing-is-fun-part-3-explaining-model-predictions-486d8616813c
https://pair-code.github.io/what-if-tool/
https://motherboard.vice.com/en_us/article/4x44dp/ai-could-resurrect-a-racist-housing-policy
https://www.nytimes.com/2017/05/01/us/politics/sent-to-prison-by-a-software-programs-secret-algorithms.html
https://www.apnews.com/efb8ad3b52d8c6079a05a4f6ef44ecd1
https://www.zdnet.com/article/new-year-new-networks-with-bevy-of-ai-optimizations/
https://www.lawfareblog.com/explainable-ai-and-legality-autonomous-weapon-systems
https://documentmedia.com/article-2880-Heres-Why-You-Need-Explainable-AI.html
https://cacm.acm.org/magazines/2018/11/232193-ai-explain-yourself/fulltext
https://medium.com/@QuantumBlack/making-ai-human-again-the-importance-of-explainable-ai-xai-95d347ccbb1c
https://medium.freecodecamp.org/an-introduction-to-explainable-ai-and-why-we-need-it-a326417dd000
https://towardsdatascience.com/explainable-ai-vs-explaining-ai-part-2-statistical-intuitive-vs-symbolic-reasoning-systems-8b05f8e0a3a0
https://www.analyticsvidhya.com/blog/2018/05/check-out-this-entirely-different-approach-to-understand-machine-learning-by-ibm/
http://nautil.us/issue/66/clockwork/we-need-an-fda-for-algorithms?utm_source=pocket&utm_medium=email&utm_campaign=pockethits
https://hackernoon.com/explainable-ai-wont-deliver-here-s-why-6738f54216be
https://www.mckinsey.com/business-functions/risk/our-insights/controlling-machine-learning-algorithms-and-their-biases
https://www.apnews.com/40f6496e65e7c6897493cc88635a6940
https://www.idigitalhealth.com/news/the-rising-clamor-for-explainable-ai
https://www.analyticsinsight.net/the-need-for-explainable-ai/
https://www.linkedin.com/pulse/explainable-ai-interactivity-hci-erik-stolterman-bergqvist/
https://www.hfsresearch.com/pointsofview/escape-the-black-box-take-steps-toward-explainable-ai-today-or-risk-damaging-your-business
https://www.information-age.com/explainable-ai-123476397/
https://www.nimh.nih.gov/funding/grant-writing-and-application-process/concept-clearances/2017/explainable-artificial-intelligence-for-decoding-and-modulating-behaviorally-activated-brain-circuits.shtml
https://eliiza.com.au/episode-2/
https://arxiv.org/abs/1811.07901v1
https://arxiv.org/abs/1811.10154v1
https://hbr.org/2018/11/why-we-need-to-audit-algorithms?utm_medium=social&utm_source=linkedin&utm_campaign=hbr
https://hbr.org/2018/10/do-people-trust-algorithms-more-than-companies-realize
https://arxiv.org/abs/1811.09539v1
https://www.kdnuggets.com/2018/11/interpretability-trust-ai-machine-learning.html
https://aibusiness.com/explainable-ai-will-be-the-future/
https://www.t-systems.com/en/best-practice/03-2018/focus/ai-governance/explainable-ai-840798
https://www.imanet.org/about-ima/news-and-media-relations/blog/2018/11/26/explainable-ai-is-it-even-possible?ssopc=1
https://conferences.oreilly.com/strata/strata-ca-2018/public/schedule/detail/64308
https://www.linkedin.com/pulse/why-xai-important-silvie-spreeuwenberg/
https://toptrends.nowandnext.com/2018/11/23/explainable-ai/
https://www.appier.com/far-explainable-artificial-intelligence/
https://www.quantiply.com/blog/understanding-explainable-ai
http://www.wilmotml.com/explainableaipart1
https://www.wired.co.uk/article/ai-bias-black-box-sandra-wachter
https://www.kdnuggets.com/2018/12/explainable-ai-model-interpretation-strategies.html
https://github.com/LASER-UMASS/Themis
https://www.bloomberg.com/opinion/articles/2017-08-30/look-who-s-fighting-our-algorithmic-overlords
https://www.bloomberg.com/opinion/articles/2017-08-30/look-who-s-fighting-our-algorithmic-overlords
https://www.enterpriseai.news/2017/08/31/unlearning-racism-sexism-learning-machines/
https://www.deutschlandfunk.de/testprogramm-themis-kann-software-rassistisch-sein.684.de.html?dram:article_id=395507
https://www.umass.edu/newsoffice/article/umass-amherst-computer-scientists-develop
https://www.fastcompany.com/90137322/is-your-software-secretly-racist-this-new-tool-can-tell
https://gcn.com/articles/2017/08/25/software-bias.aspx
https://www.kdnuggets.com/2018/12/four-approaches-ai-machine-learning.html
https://www.businessinsider.com/salesforce-hires-paula-goldman-as-chief-ethical-and-humane-use-officer-2018-12?r=US&IR=T
https://www.bloomberg.com/news/articles/2018-12-12/artificial-intelligence-has-some-explaining-to-do
https://dssg.github.io/aequitas/index.html
https://towardsdatascience.com/explainable-artificial-intelligence-part-3-hands-on-machine-learning-model-interpretation-e8ebe5afc608
https://github.com/pbiecek/xai_resources
http://www.imperial.ac.uk/enterprise/issues/explainable-ai/
https://towardsdatascience.com/achieving-the-machine-learning-dream-interpretability-and-performance-in-a-single-model-9306beec4a94
https://www.businessinsider.com/sc/explainable-ai-customer-satisfaction-ibm-think-2018-12?linkId=61133622&IR=T
https://ainowinstitute.org/AI_Now_2018_Report.pdf
https://www.logicalglue.com/hello-world-6
https://www.wearable-technologies.com/2018/08/how-explainable-artificial-intelligence-could-lower-the-effect-of-biased-algorithms/
https://www.computing.co.uk/ctg/opinion/3063820/explainable-ai-dissecting-the-development-of-auditable-artificial-intelligence
https://www.idigitalhealth.com/news/the-rising-clamor-for-explainable-ai
https://towardsdatascience.com/towards-ai-transparency-four-pillars-required-to-build-trust-in-artificial-intelligence-systems-d1c45a1bdd59
http://www.nuriaoliver.com/papers/Philosophy_and_Technology_final.pdf
http://www.imm.dtu.dk/~tobo/AI_chora2.pdf
https://www.cmu.edu/news/stories/archives/2018/october/explainable-ai.html
https://journal.jp.fujitsu.com/en/2018/10/11/01/
https://link.springer.com/article/10.1007%2Fs00287-018-1102-5
https://www.parc.com/blog/explainable-ai-an-overview-of-parcs-cogle-project-with-darpa/
https://bdtechtalks.com/2018/10/15/kate-saenko-explainable-ai-deep-learning-rise/
http://fse.studenttheses.ub.rug.nl/17814/
http://vis.cse.ust.hk/groups/xai-vis/
https://www.ribbonfarm.com/2018/03/13/justifiable-ai/
https://which-50.com/autonomous-cars-present-new-challenges-for-explainable-ai/
https://www.hfsresearch.com/pointsofview/escape-the-black-box-take-steps-toward-explainable-ai-today-or-risk-damaging-your-business
https://pursuit.unimelb.edu.au/articles/what-were-you-thinking
https://www.cmo.com.au/article/648282/why-explainability-around-ai-gaining-ground/
https://www.research.ox.ac.uk/Article/2018-10-15-making-algorithms-accountable-and-explainable-the-need-for-a-legal-framework
https://tech.co/news/sexist-ai-doomed-reflect-worst-2018-10
https://www.kdnuggets.com/2018/10/enterprise-explainable-ai.html
https://hbr.org/2018/07/collaborative-intelligence-humans-and-ai-are-joining-forces?utm_campaign=hbr&utm_medium=social&utm_source=facebook
https://siliconangle.com/2018/10/19/explainable-ai-crunches-text-data-seven-ways-to-sunday-cubeconversations/
https://sites.google.com/view/whi2018/homehttps://www.linkedin.com/pulse/intelligent-sommeliers-case-explained-silvie-spreeuwenberg/
https://www.linkedin.com/pulse/why-dont-you-trust-my-predictions-how-can-we-get-trump-vikas-agrawal/
https://confengine.com/odsc-india-2018/proposal/7200/bring-in-the-lawyers-explainable-ai-driven-decision-making-for-the-enterprise
https://www.w3.org/community/aikr/2018/10/31/towards-a-web-standard-for-explainable-ai/
https://www.biorxiv.org/content/10.1101/413302v1
https://blogs.wsj.com/cio/2018/09/26/tech-giants-launch-new-ai-tools-as-worries-mount-about-explainability/
http://visxai.io/
https://www.linkedin.com/pulse/what-does-ai-know-model-interpretability-occlusion-susan-sheldrick/
https://venturebeat.com/2018/11/01/ibm-harvard-develop-tool-to-tackle-black-box-problem-in-ai-translation/
https://silverpond.com.au/2018/04/17/an-ai-tells-us-what-it-knows-when-we-poke-it-in-the-eye/
https://github.com/IBM/AIF360
https://github.com/ModelOriented/DrWhy
http://antoniosliapis.com/papers/explainable_ai_for_designers.pdf
https://arxiv.org/abs/1811.03163
https://www.forbes.com/sites/alexknapp/2018/05/25/ibm-researchers-explain-machine-learning-models-by-exploring-what-isnt-there/#4201032b2838
https://www.analyticsvidhya.com/blog/2018/05/check-out-this-entirely-different-approach-to-understand-machine-learning-by-ibm/