diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 918a90e584b57..6a2ce187c1994 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -23,7 +23,7 @@ sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) import gguf -from convert import LlamaHfVocab +from convert import LlamaHfVocab, permute ###### MODEL DEFINITIONS ###### @@ -1052,12 +1052,72 @@ def set_gguf_parameters(self): self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"])) -@Model.register("MixtralForCausalLM") -class MixtralModel(Model): +@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM") +class LlamaModel(Model): model_arch = gguf.MODEL_ARCH.LLAMA def set_vocab(self): - self._set_vocab_sentencepiece() + try: + self. _set_vocab_sentencepiece() + except FileNotFoundError: + self._set_vocab_llama_hf() + + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) + + # Same as super class, but permuting q_proj, k_proj + def write_tensors(self): + block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) + tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) + n_head = self.hparams.get("num_attention_heads") + n_kv_head = self.hparams.get("num_key_value_heads") + for name, data_torch in self.get_tensors(): + # we don't need these + if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): + continue + + old_dtype = data_torch.dtype + + # convert any unsupported data types to float32 + if data_torch.dtype not in (torch.float16, torch.float32): + data_torch = data_torch.to(torch.float32) + + data = data_torch.numpy() + + if name.endswith("q_proj.weight"): + data = permute(data, n_head, n_head) + if name.endswith("k_proj.weight"): + data = permute(data, n_head, n_kv_head) + + data = data.squeeze() + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) + if new_name is None: + print(f"Can not map tensor {name!r}") + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if self.ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + + self.gguf_writer.add_tensor(new_name, data) @Model.register("GrokForCausalLM")