-
Notifications
You must be signed in to change notification settings - Fork 96
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
1,218 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,7 @@ | ||
datasets | ||
plots | ||
savestates/* | ||
|
||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
*.py[cod] | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
from copy import deepcopy | ||
import numpy as np | ||
import cudarray as ca | ||
import deeppy as dp | ||
import deeppy.expr as expr | ||
|
||
from vaegan import KLDivergence, NegativeGradient, SquareError | ||
|
||
|
||
class AppendSpatially(expr.base.Binary): | ||
def __call__(self, imgs, feats): | ||
self.imgs = imgs | ||
self.feats = feats | ||
self.inputs = [imgs, feats] | ||
return self | ||
|
||
def setup(self): | ||
b, c, h, w = self.imgs.out_shape | ||
b_, f = self.feats.out_shape | ||
if b != b_: | ||
raise ValueError('batch size mismatch') | ||
self.out_shape = (b, c+f, h, w) | ||
self.out = ca.empty(self.out_shape) | ||
self.out_grad = ca.empty(self.out_shape) | ||
self.tmp = ca.zeros((b, f, h, w)) | ||
|
||
def fprop(self): | ||
self.tmp.fill(0.0) | ||
feats = ca.reshape(self.feats.out, self.feats.out.shape + (1, 1)) | ||
ca.add(feats, self.tmp, out=self.tmp) | ||
ca.extra.concatenate(self.imgs.out, self.tmp, axis=1, out=self.out) | ||
|
||
def bprop(self): | ||
ca.extra.split(self.out_grad, a_size=self.imgs.out_shape[1], axis=1, | ||
out_a=self.imgs.out_grad, out_b=self.tmp) | ||
|
||
|
||
class ConditionalSequential(expr.Sequential): | ||
def __call__(self, x, y): | ||
for op in self.collection: | ||
if isinstance(op, (expr.Concatenate, AppendSpatially)): | ||
x = op(x, y) | ||
else: | ||
x = op(x) | ||
return x | ||
|
||
|
||
class ConditionalVAEGAN(dp.base.Model): | ||
def __init__(self, encoder, sampler, generator, discriminator, mode, | ||
reconstruct_error=None): | ||
self.encoder = encoder | ||
self.sampler = sampler | ||
self.generator = generator | ||
self.mode = mode | ||
self.discriminator = discriminator | ||
self.eps = 1e-4 | ||
if reconstruct_error is None: | ||
reconstruct_error = SquareError() | ||
self.reconstruct_error = reconstruct_error | ||
if self.mode == 'vaegan': | ||
self.generator_neg = deepcopy(generator) | ||
self.generator_neg.params = [p.share() for p in generator.params] | ||
|
||
def _embed_expr(self, x, y): | ||
h_enc = self.encoder(x, y) | ||
z, z_mu, z_log_sigma, z_eps = self.sampler(h_enc) | ||
z = z_mu | ||
return z | ||
|
||
def _reconstruct_expr(self, z, y): | ||
return self.generator(z, y) | ||
|
||
def setup(self, x_shape, y_shape): | ||
batch_size = x_shape[0] | ||
self.sampler.batch_size = x_shape[0] | ||
self.x_src = expr.Source(x_shape) | ||
self.y_src = expr.Source(y_shape) | ||
|
||
if self.mode in ['vae', 'vaegan']: | ||
h_enc = self.encoder(self.x_src, self.y_src) | ||
z, z_mu, z_log_sigma, z_eps = self.sampler(h_enc) | ||
self.kld = KLDivergence()(z_mu, z_log_sigma) | ||
x_tilde = self.generator(z, self.y_src) | ||
# if self.mode == 'vaegan': | ||
# x_tilde = ScaleGradient()(x_tilde) | ||
self.logpxz = self.reconstruct_error(x_tilde, self.x_src) | ||
loss = self.kld + expr.sum(self.logpxz) | ||
|
||
if self.mode in ['gan', 'vaegan']: | ||
y = self.y_src | ||
if self.mode == 'gan': | ||
z = self.sampler.samples() | ||
x_tilde = self.generator(z, y) | ||
x_tilde = NegativeGradient()(x_tilde) | ||
gen_size = batch_size | ||
elif self.mode == 'vaegan': | ||
z = NegativeGradient()(z) | ||
z = expr.Concatenate(axis=0)(z, z_eps) | ||
y = expr.Concatenate(axis=0)(y, self.y_src) | ||
x_tilde = self.generator_neg(z, y) | ||
x_tilde = NegativeGradient()(x_tilde) | ||
gen_size = batch_size*2 | ||
x = expr.Concatenate(axis=0)(self.x_src, x_tilde) | ||
y = expr.Concatenate(axis=0)(y, self.y_src) | ||
d = self.discriminator(x, y) | ||
d = expr.clip(d, self.eps, 1.0-self.eps) | ||
|
||
real_size = batch_size | ||
sign = np.ones((real_size + gen_size, 1), dtype=ca.float_) | ||
sign[real_size:] = -1.0 | ||
offset = np.zeros_like(sign) | ||
offset[real_size:] = 1.0 | ||
|
||
self.gan_loss = expr.log(d*sign + offset) | ||
if self.mode == 'gan': | ||
loss = expr.sum(-self.gan_loss) | ||
elif self.mode == 'vaegan': | ||
loss = loss + expr.sum(-self.gan_loss) | ||
|
||
self._graph = expr.ExprGraph(loss) | ||
self._graph.out_grad = ca.array(1.0) | ||
self._graph.setup() | ||
|
||
@property | ||
def params(self): | ||
enc_params = [] | ||
gen_params = self.generator.params | ||
dis_params = [] | ||
if self.mode != 'vae': | ||
dis_params = self.discriminator.params | ||
if self.mode != 'gan': | ||
enc_params = self.encoder.params + self.sampler.params | ||
return enc_params, gen_params, dis_params | ||
|
||
def update(self, x, y): | ||
self.x_src.out = x | ||
self.y_src.out = y | ||
self._graph.fprop() | ||
self._graph.bprop() | ||
kld = 0 | ||
d_x_loss = 0 | ||
d_z_loss = 0 | ||
if self.mode != 'gan': | ||
kld = np.array(self.kld.out) | ||
if self.mode != 'vae': | ||
gan_loss = -np.array(self.gan_loss.out) | ||
batch_size = x.shape[0] | ||
d_x_loss = float(np.mean(gan_loss[:batch_size])) | ||
d_z_loss = float(np.mean(gan_loss[batch_size:])) | ||
return d_x_loss, d_z_loss, kld | ||
|
||
def _batchwise(self, x, y, expr_fun): | ||
x = dp.input.Input.from_any(x) | ||
y = dp.input.Input.from_any(y) | ||
x_src = expr.Source(x.x_shape) | ||
y_src = expr.Source(y.x_shape) | ||
graph = expr.ExprGraph(expr_fun(x_src, y_src)) | ||
graph.setup() | ||
out = [] | ||
for x_batch, y_batch in zip(x.batches(), y.batches()): | ||
x_src.out = x_batch['x'] | ||
y_src.out = y_batch['x'] | ||
graph.fprop() | ||
out.append(np.array(graph.out)) | ||
out = np.concatenate(out)[:x.n_samples] | ||
return out | ||
|
||
def embed(self, x, y): | ||
""" Input to hidden. """ | ||
return self._batchwise(x, y, self._embed_expr) | ||
|
||
def reconstruct(self, z, y): | ||
""" Hidden to input. """ | ||
return self._batchwise(z, y, self._reconstruct_expr) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,214 @@ | ||
#!/usr/bin/env python | ||
|
||
import pickle | ||
import numpy as np | ||
import scipy as sp | ||
import deeppy as dp | ||
import deeppy.expr as expr | ||
|
||
import cond_vaegan | ||
import vaegan | ||
from util import img_tile, one_hot, random_walk | ||
from video import Video | ||
|
||
|
||
def affine(n_out, gain): | ||
return expr.nnet.Affine(n_out=n_out, weights=dp.AutoFiller(gain)) | ||
|
||
|
||
def conv(n_filters, filter_size, gain=1.0): | ||
return expr.nnet.Convolution( | ||
n_filters=n_filters, strides=(1, 1), weights=dp.AutoFiller(gain), | ||
filter_shape=(filter_size, filter_size), border_mode='same', | ||
) | ||
|
||
|
||
def pool(method='max'): | ||
return expr.nnet.Pool(win_shape=(3, 3), method=method, strides=(2, 2), | ||
border_mode='same') | ||
|
||
|
||
def upscale(): | ||
return expr.nnet.Rescale(factor=2, method='perforated') | ||
|
||
|
||
def model_expressions(img_shape): | ||
n_channels = img_shape[0] | ||
gain = 1.0 | ||
sigma = 0.001 | ||
n_encoder = 1024 | ||
n_discriminator = 1024 | ||
n_hidden = 512 | ||
hidden_shape = (128, 8, 8) | ||
n_generator = np.prod(hidden_shape) | ||
|
||
encoder = cond_vaegan.ConditionalSequential([ | ||
conv(32, 5, gain=gain), | ||
pool(), | ||
expr.nnet.ReLU(), | ||
conv(64, 5, gain=gain), | ||
pool(), | ||
expr.nnet.ReLU(), | ||
conv(96, 3, gain=gain), | ||
expr.nnet.ReLU(), | ||
expr.Reshape((-1, 96*8*8)), | ||
expr.Concatenate(axis=1), | ||
affine(n_encoder, gain), | ||
expr.nnet.ReLU(), | ||
]) | ||
sampler = vaegan.NormalSampler( | ||
n_hidden, | ||
weight_filler=dp.AutoFiller(gain), | ||
bias_filler=dp.NormalFiller(sigma), | ||
) | ||
generator = cond_vaegan.ConditionalSequential([ | ||
expr.Concatenate(axis=1), | ||
affine(n_generator, gain), | ||
expr.nnet.BatchNormalization(), | ||
expr.Reshape((-1,) + hidden_shape), | ||
upscale(), | ||
expr.nnet.ReLU(), | ||
cond_vaegan.AppendSpatially(), | ||
conv(256, 5, gain=gain), | ||
expr.nnet.SpatialBatchNormalization(), | ||
upscale(), | ||
expr.nnet.ReLU(), | ||
cond_vaegan.AppendSpatially(), | ||
conv(128, 5, gain=gain), | ||
expr.nnet.SpatialBatchNormalization(), | ||
expr.nnet.ReLU(), | ||
cond_vaegan.AppendSpatially(), | ||
conv(128, 5, gain=gain), | ||
expr.nnet.SpatialBatchNormalization(), | ||
expr.nnet.ReLU(), | ||
conv(n_channels, 3, gain=gain), | ||
]) | ||
discriminator = cond_vaegan.ConditionalSequential([ | ||
conv(32, 5, gain=gain), | ||
pool(), | ||
expr.nnet.ReLU(), | ||
expr.nnet.SpatialDropout(0.2), | ||
conv(64, 5, gain=gain), | ||
pool(), | ||
expr.nnet.ReLU(), | ||
expr.nnet.SpatialDropout(0.2), | ||
conv(96, 3, gain=gain), | ||
expr.nnet.ReLU(), | ||
expr.nnet.SpatialDropout(0.2), | ||
expr.Reshape((-1, 96*8*8)), | ||
expr.Concatenate(axis=1), | ||
affine(n_discriminator, gain), | ||
expr.nnet.ReLU(), | ||
expr.nnet.Dropout(0.5), | ||
affine(1, gain), | ||
expr.nnet.Sigmoid(), | ||
]) | ||
return encoder, sampler, generator, discriminator | ||
|
||
|
||
def clip_range(imgs): | ||
return np.tanh(imgs*0.5) | ||
|
||
|
||
def run(): | ||
mode = 'gan' | ||
experiment_name = mode | ||
filename = 'savestates/cifar_cond_' + experiment_name + '.pickle' | ||
in_filename = filename | ||
in_filename = None | ||
print('experiment_name', experiment_name) | ||
print('in_filename', in_filename) | ||
print('filename', filename) | ||
|
||
# Fetch dataset | ||
dataset = dp.dataset.CIFAR10() | ||
x_train, y_train, x_test, y_test = dataset.arrays(dp_dtypes=True) | ||
n_classes = dataset.n_classes | ||
|
||
# Normalize pixel intensities | ||
scaler = dp.StandardScaler() | ||
x_train = scaler.fit_transform(x_train) | ||
x_test = scaler.transform(x_test) | ||
y_train = one_hot(y_train, n_classes).astype(dp.float_) | ||
y_test = one_hot(y_test, n_classes).astype(dp.float_) | ||
|
||
# Setup network | ||
if in_filename is None: | ||
print('Creating new model') | ||
img_shape = x_train.shape[1:] | ||
expressions = model_expressions(img_shape) | ||
else: | ||
print('Starting from %s' % in_filename) | ||
with open(in_filename, 'rb') as f: | ||
expressions = pickle.load(f) | ||
|
||
encoder, sampler, generator, discriminator = expressions | ||
model = cond_vaegan.ConditionalVAEGAN( | ||
encoder=encoder, | ||
sampler=sampler, | ||
generator=generator, | ||
discriminator=discriminator, | ||
mode=mode, | ||
) | ||
|
||
# Prepare network inputs | ||
batch_size = 64 | ||
train_input = dp.SupervisedInput(x_train, y_train, batch_size=batch_size, | ||
epoch_size=150) | ||
|
||
# Plotting | ||
n_examples = 100 | ||
examples = x_test[:n_examples] | ||
examples_y = y_test[:n_examples] | ||
samples_z = np.random.normal(size=(n_examples, model.sampler.n_hidden)) | ||
samples_z = samples_z.astype(dp.float_) | ||
samples_y = ((np.arange(n_examples) // 10) % n_classes) | ||
samples_y = one_hot(samples_y, n_classes).astype(dp.float_) | ||
|
||
recon_video = Video('plots/cifar_' + experiment_name + | ||
'_reconstruction.mp4') | ||
sample_video = Video('plots/cifar_' + experiment_name + '_samples.mp4') | ||
sp.misc.imsave('cifar_examples.png', img_tile(dp.misc.to_b01c(examples))) | ||
|
||
def plot(): | ||
examples_z = model.embed(examples, examples_y) | ||
examples_recon = model.reconstruct(examples_z, examples_y) | ||
examples_recon = clip_range(examples_recon) | ||
recon_video.append(img_tile(dp.misc.to_b01c(examples_recon))) | ||
samples = clip_range(model.reconstruct(samples_z, samples_y)) | ||
sample_video.append(img_tile(dp.misc.to_b01c(samples))) | ||
model.setup(**train_input.shapes) | ||
|
||
# Train network | ||
runs = [ | ||
(150, dp.RMSProp(learn_rate=0.1)), | ||
(150, dp.RMSProp(learn_rate=0.08)), | ||
(150, dp.RMSProp(learn_rate=0.06)), | ||
(150, dp.RMSProp(learn_rate=0.04)), | ||
(25, dp.RMSProp(learn_rate=0.01)), | ||
] | ||
try: | ||
for n_epochs, learn_rule in runs: | ||
if mode == 'vae': | ||
vaegan.train(model, train_input, learn_rule, n_epochs, | ||
epoch_callback=plot) | ||
else: | ||
vaegan.margin_train(model, train_input, learn_rule, n_epochs, | ||
epoch_callback=plot) | ||
except KeyboardInterrupt: | ||
pass | ||
|
||
raw_input('\n\nsave model to %s?\n' % filename) | ||
with open(filename, 'wb') as f: | ||
expressions = encoder, sampler, generator, discriminator | ||
pickle.dump(expressions, f) | ||
|
||
print('Generating latent space video') | ||
walk_video = Video('plots/cifar_' + experiment_name + '_walk.mp4') | ||
for z in random_walk(samples_z, 500, step_std=0.15): | ||
samples = clip_range(model.reconstruct(z, samples_y)) | ||
walk_video.append(img_tile(dp.misc.to_b01c(samples))) | ||
|
||
|
||
if __name__ == '__main__': | ||
run() |
Oops, something went wrong.