forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_gl_mch.py
181 lines (156 loc) · 5.11 KB
/
eval_gl_mch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import time
import logging
import argparse
from mxnet.gluon.utils import split_and_load
from common.logger_utils import initialize_logging
from gluon.utils import prepare_mx_context, prepare_model
from gluon.dataset_utils import get_dataset_metainfo
from gluon.dataset_utils import get_val_data_source
def add_eval_parser_arguments(parser):
parser.add_argument(
"--model",
type=str,
required=True,
help="type of model to use. see model_provider for options")
parser.add_argument(
"--use-pretrained",
action="store_true",
help="enable using pretrained model from github repo")
parser.add_argument(
"--dtype",
type=str,
default="float32",
help="base data type for tensors")
parser.add_argument(
"--resume",
type=str,
default="",
help="resume from previously saved parameters")
parser.add_argument(
"--calc-flops",
dest="calc_flops",
action="store_true",
help="calculate FLOPs")
parser.add_argument(
"--calc-flops-only",
dest="calc_flops_only",
action="store_true",
help="calculate FLOPs without quality estimation")
parser.add_argument(
"--data-subset",
type=str,
default="val",
help="data subset. options are val and test")
parser.add_argument(
"--num-gpus",
type=int,
default=0,
help="number of gpus to use")
parser.add_argument(
"-j",
"--num-data-workers",
dest="num_workers",
default=4,
type=int,
help="number of preprocessing workers")
parser.add_argument(
"--batch-size",
type=int,
default=512,
help="training batch size per device (CPU/GPU)")
parser.add_argument(
"--save-dir",
type=str,
default="",
help="directory of saved models and log-files")
parser.add_argument(
"--logging-file-name",
type=str,
default="train.log",
help="filename of training log")
parser.add_argument(
"--log-packages",
type=str,
default="mxnet, numpy",
help="list of python packages for logging")
parser.add_argument(
"--log-pip-packages",
type=str,
default="mxnet-cu100",
help="list of pip packages for logging")
parser.add_argument(
"--disable-cudnn-autotune",
action="store_true",
help="disable cudnn autotune for segmentation models")
parser.add_argument(
"--show-progress",
action="store_true",
help="show progress bar")
def parse_args():
parser = argparse.ArgumentParser(
description="Evaluate a model for image matching (Gluon/HPatches)",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--dataset",
type=str,
default="HPatches",
help="dataset name")
parser.add_argument(
"--work-dir",
type=str,
default=os.path.join("..", "imgclsmob_data"),
help="path to working directory only for dataset root path preset")
args, _ = parser.parse_known_args()
dataset_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
dataset_metainfo.add_dataset_parser_arguments(
parser=parser,
work_dir_path=args.work_dir)
add_eval_parser_arguments(parser)
args = parser.parse_args()
return args
def batch_fn(batch, ctx):
data_src = split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
data_dst = split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
label = split_and_load(batch[2], ctx_list=ctx, batch_axis=0)
return data_src, data_dst, label
def main():
args = parse_args()
os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"
assert (args.batch_size == 1)
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
ds_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
ds_metainfo.update(args=args)
ctx, batch_size = prepare_mx_context(
num_gpus=args.num_gpus,
batch_size=args.batch_size)
net = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip(),
dtype=args.dtype,
net_extra_kwargs=None,
load_ignore_extra=False,
classes=args.num_classes,
in_channels=args.in_channels,
do_hybridize=False,
ctx=ctx)
test_data = get_val_data_source(
ds_metainfo=ds_metainfo,
batch_size=args.batch_size,
num_workers=args.num_workers)
tic = time.time()
for batch in test_data:
data_src_list, data_dst_list, labels_list = batch_fn(batch, ctx)
outputs_src_list = [net(X) for X in data_src_list]
assert (outputs_src_list is not None)
pass
logging.info("Time cost: {:.4f} sec".format(
time.time() - tic))
if __name__ == "__main__":
main()