This simple tool allows you to:
- Convert
jpg/png
images intodicom
. - Convert
dicom
intojpg
images. - Convert
nifti
files intodicom
series. - Convert
dicom
series intonifti
files
And all this conversions can be done both, in one file or in a whole directory.
To run the app, you must have Python
installed on your machine. You will also need some prerequisites, which you can easily install from the file provided with this repo. Please follow these steps to ensure that you can launch the app without issue.
- Clone the repo & cd:
git clone https://github.com/amine0110/Medical-Conversions
cd Medical-Conversions
- Install the requirements.txt file:
pip install -r requirements.txt
- Run the
main
script:
python main.py
And this is the window that you will get:
Open File
: to open then convert one file only.Open Dir
: to open then convert a directory which means multiple files at the same directory will be converted in one click.
Converting normal image into dicom file, which is explained in this blog post.
def convert_image_to_dicom(in_dir, out_dir):
ds = pydicom.dcmread('utils/dicom_sample.dcm') # pre-existing dicom file
image = Image.open(in_dir) # the PNG or JPG file to be replace
if image.mode == 'L':
np_image = np.array(image.getdata(),dtype=np.uint8)
ds.Rows = image.height
ds.Columns = image.width
ds.PhotometricInterpretation = "MONOCHROME1"
ds.SamplesPerPixel = 1
ds.BitsStored = 8
ds.BitsAllocated = 8
ds.HighBit = 7
ds.PixelRepresentation = 0
ds.PixelData = np_image.tobytes()
ds.save_as(out_dir + '.dcm')
elif image.mode == 'RGBA':
np_image = np.array(image.getdata(), dtype=np.uint8)[:,:3]
ds.Rows = image.height
ds.Columns = image.width
ds.PhotometricInterpretation = "RGB"
ds.SamplesPerPixel = 3
ds.BitsStored = 8
ds.BitsAllocated = 8
ds.HighBit = 7
ds.PixelRepresentation = 0
ds.PixelData = np_image.tobytes()
ds.save_as(out_dir + '.dcm')
Converting dicom file into jpg image, as explained in this blog post
def convert_dcm_jpg(in_dir, out_dir):
im = pydicom.dcmread(in_dir)
im = im.pixel_array.astype(float)
rescaled_image = (np.maximum(im,0)/im.max())*255 # float pixels
final_image = np.uint8(rescaled_image) # integers pixels
final_image = Image.fromarray(final_image)
final_image.save(out_dir + '.jpg')
Converting nifti into dicom using SimpleITK, the idea came from this function that converts an array into dicom series.
def convert_nifti_to_dicom(in_dir, out_dir):
new_img = sitk.ReadImage(in_dir)
modification_time = time.strftime("%H%M%S")
modification_date = time.strftime("%Y%m%d")
direction = new_img.GetDirection()
series_tag_values = [("0008|0031",modification_time), # Series Time
("0008|0021",modification_date), # Series Date
("0008|0008","DERIVED\\SECONDARY"), # Image Type
("0020|000e", "1.2.826.0.1.3680043.2.1125."+modification_date+".1"+modification_time), # Series Instance UID
("0020|0037", '\\'.join(map(str, (direction[0], direction[3], direction[6],# Image Orientation (Patient)
direction[1],direction[4],direction[7])))),
("0008|103e", "Created-SimpleITK")] # Series Description
# Write slices to output directory
list(map(lambda i: writeSlices(series_tag_values, new_img, i, out_dir), range(new_img.GetDepth())))
Which depends to this function:
def writeSlices(series_tag_values, new_img, i, out_dir):
image_slice = new_img[:,:,i]
writer = sitk.ImageFileWriter()
writer.KeepOriginalImageUIDOn()
# Tags shared by the series.
list(map(lambda tag_value: image_slice.SetMetaData(tag_value[0], tag_value[1]), series_tag_values))
# Slice specific tags.
image_slice.SetMetaData("0008|0012", time.strftime("%Y%m%d")) # Instance Creation Date
image_slice.SetMetaData("0008|0013", time.strftime("%H%M%S")) # Instance Creation Time
# Setting the type to CT preserves the slice location.
image_slice.SetMetaData("0008|0060", "CT") # set the type to CT so the thickness is carried over
# (0020, 0032) image position patient determines the 3D spacing between slices.
image_slice.SetMetaData("0020|0032", '\\'.join(map(str,new_img.TransformIndexToPhysicalPoint((0,0,i))))) # Image Position (Patient)
image_slice.SetMetaData("0020,0013", str(i)) # Instance Number
# Write to the output directory and add the extension dcm, to force writing in DICOM format.
writer.SetFileName(os.path.join(out_dir,'slice' + str(i).zfill(4) + '.dcm'))
writer.Execute(image_slice)
Stay up-to-date on the latest in computer vision and medical imaging! Subscribe to my newsletter now for insights and analysis on the cutting-edge developments in this exciting field.
Learn how to effectively manage and process DICOM files in Python with our comprehensive course, designed to equip you with the skills and knowledge you need to succeed.
https://www.learn.pycad.co/course/dicom-simplified
You can start doing these conversions online without running any code. Please check this page for more information.