-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_validation.py
236 lines (220 loc) · 8.21 KB
/
run_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from traj.trajectory import Goal, Postprocess, Obstacle_Sphere, Obstacle_InfiniteCylinder, Gains_Trajectory, Task
from traj.trajectory_wholeboby import Trajectory_WholeBody_Planner
from core.robot import Robot
import numpy as np
import math
from liecasadi import SO3
import utils_muav
import time
import multiprocessing
from typing import List, Dict
import pandas as pd
import os, datetime
class Database_results:
def __init__(self, name_database: str, columns: List[str] = [""]) -> None:
self.name_database_with_ext = name_database + ".csv"
try:
self.df = pd.read_csv(self.name_database_with_ext)
except:
self.create_empty_csv_database(columns=columns)
def create_empty_csv_database(self, columns: List[str]) -> None:
self.df = pd.DataFrame(columns=columns)
self.df.to_csv(self.name_database_with_ext, index=False)
def update(self, list_to_be_added: List) -> None:
df = pd.DataFrame(columns=self.df.columns)
df.loc[len(self.df)] = list_to_be_added
df.to_csv(self.name_database_with_ext, index=False, mode="a", header=False)
def rename(self, new_name: str) -> None:
os.rename(self.name_database_with_ext, new_name + ".csv")
self.name_database_with_ext = new_name + ".csv"
def define_task(
goal_dist: float,
goal_angl: float,
obst_radius: float,
obst_type: str,
ic_speed_x: float,
ic_roll: float,
ic_pitch: float,
ic_yaw: float,
) -> Task:
knots = 2 * goal_dist + 30
list_goals = []
list_obstacles = []
list_goals.append(
Goal(index=int(knots / 2)).set_position(
xyz=[goal_dist * np.cos(np.deg2rad(goal_angl)), goal_dist * np.sin(np.deg2rad(goal_angl)), 0],
isStrict=True,
param=0.1,
)
)
list_goals.append(
Goal(index=knots)
.set_position(xyz=[2 * goal_dist * np.cos(np.deg2rad(goal_angl)), 0, 0], isStrict=True, param=0.1)
.set_linearVelocityBody(xyz=[10, 0, 0], isStrict=False, param=5)
)
obs1 = [goal_dist / 2 * np.cos(np.deg2rad(goal_angl)), goal_dist / 2 * np.sin(np.deg2rad(goal_angl)), 0]
obs2 = [3 * goal_dist / 2 * np.cos(np.deg2rad(goal_angl)), goal_dist / 2 * np.sin(np.deg2rad(goal_angl)), 0]
if obst_radius > 0:
if obst_type == "sphere":
list_obstacles.append(Obstacle_Sphere(xyz=obs1, r=obst_radius))
list_obstacles.append(Obstacle_Sphere(xyz=obs2, r=obst_radius))
elif obst_type == "cylinder":
list_obstacles.append(Obstacle_InfiniteCylinder(xy=obs1[:2], r=obst_radius))
list_obstacles.append(Obstacle_InfiniteCylinder(xy=obs2[:2], r=obst_radius))
task = Task(
name="mt",
knots=knots,
list_goals=list_goals,
list_obstacles=list_obstacles,
ic_twist_w_b=np.array([ic_speed_x, 0, 0, 0, 0, 0]),
ic_position_w_b=np.zeros(3),
ic_quat_w_b=np.squeeze(
SO3.from_euler(np.array([ic_roll, ic_pitch, ic_yaw]) * math.pi / 180).as_quat().coeffs().full()
),
)
return task
def solve_s_trajectory(
robot_name: str,
goal_dist: float,
goal_angl: float,
obst_radius: float,
obst_type: str,
ic_speed_x: float,
ic_roll: float,
ic_pitch: float,
ic_yaw: float,
str_date: str,
):
t0_fitness_func = time.time()
task = define_task(goal_dist, goal_angl, obst_radius, obst_type, ic_speed_x, ic_roll, ic_pitch, ic_yaw)
robot = Robot(f"{utils_muav.get_repository_tree(relative_path=True)['urdf']}/{robot_name}")
robot.set_joint_limit()
robot.set_propeller_limit()
traj = Trajectory_WholeBody_Planner(
robot=robot, knots=task.knots, time_horizon=None, regularize_control_input_variations=True
)
traj.set_gains(
Gains_Trajectory(
cost_function_weight_time=robot.controller_parameters["weight_time_energy"], cost_function_weight_energy=1
)
)
traj.set_wind_parameters(air_density=1.225, air_viscosity=1.8375e-5, vel_w_wind=np.array([-1, 0, 0]))
traj.set_initial_condition(
s=np.zeros(robot.ndofs),
dot_s=np.zeros(robot.ndofs),
ddot_s=np.zeros(robot.ndofs),
pos_w_b=task.ic_position_w_b,
quat_w_b=task.ic_quat_w_b,
twist_w_b=task.ic_twist_w_b,
)
[traj.add_goal(goal) for goal in task.list_goals]
[traj.add_obstacle(obstacle) for obstacle in task.list_obstacles]
traj.create()
try:
out = traj.solve()
traj.save(out, folder_name=f"result/{str_date}")
pp = Postprocess(out)
except:
pp = Postprocess()
out = {}
Database_results("multiple_trajectories").update(
[
datetime.datetime.timestamp(datetime.datetime.now()),
robot_name,
goal_dist,
goal_angl,
obst_radius,
obst_type,
ic_speed_x,
ic_roll,
ic_pitch,
ic_yaw,
True if pp.out is not None else False,
pp.stats["energy"]["global"]["joint"] + pp.stats["energy"]["global"]["propeller"],
pp.stats["time"]["trajectory"],
time.time() - t0_fitness_func,
pp.stats["energy"]["global"]["propeller"],
pp.stats["energy"]["global"]["joint"],
traj.name_trajectory,
]
)
def run_validation(dict: Dict, n_process: int = 8):
str_date = utils_muav.get_date_str()
Database_results("multiple_trajectories").create_empty_csv_database(
columns=[
"timestamp",
"name_drone",
"distance",
"angle",
"radius",
"type_obstacle",
"initial_speed_x",
"initial_roll",
"initial_pitch",
"initial_yaw",
"success",
"energy",
"time",
"computational_time",
"energy_propeller",
"energy_joint",
"traj_name",
]
)
db_ff = Database_results(name_database="multiple_trajectories")
with multiprocessing.Pool(processes=n_process) as pool:
pool.starmap(
solve_s_trajectory,
[
(
robot_name,
goal_dist,
goal_angl,
obst_radius,
type_obstacle,
ic_speed_x,
ic_roll,
ic_pitch,
ic_yaw,
str_date,
)
for robot_name in dict["robot"]
for goal_dist in dict["goal_dist"]
for goal_angl in dict["goal_angl"]
for obst_radius in dict["obst_radius"]
for type_obstacle in dict["obst_type"]
for ic_speed_x in dict["ic_speed_x"]
for ic_roll in dict["ic_roll"]
for ic_pitch in dict["ic_pitch"]
for ic_yaw in dict["ic_yaw"]
],
)
db_ff.rename(f"result/mt_{str_date}")
if __name__ == "__main__":
# Script for running the validation of the co-design methodology (see section VI.B of the paper).
# If you leave the code unchanged, it will run with the parameters from the paper.
# If you want to run your own validation, change the dictionary `dict` below.
validation_dict = {}
# Drone names to be tested
validation_dict["robot"] = [
"bix3",
"opt1",
"opt2",
"opt3",
"opt4",
]
# List of distances to be tested (see Fig. 8 of the paper)
validation_dict["goal_dist"] = [30, 40, 50]
# List of angles to be tested (see Fig. 8 of the paper)
validation_dict["goal_angl"] = [0, 10, 20, 30, 40, 50]
# List of radii to be tested (see Fig. 8 of the paper)
validation_dict["obst_radius"] = [0, 0.5, 2, 4, 6, 8]
# List of obstacle types to be tested (see Fig. 8 of the paper)
validation_dict["obst_type"] = ["sphere"]
# List of initial speed along X to be tested (see Fig. 8 of the paper)
validation_dict["ic_speed_x"] = [8, 10, 12]
# List of initial drone orientation to be tested (see Fig. 8 of the paper)
validation_dict["ic_roll"] = [0]
validation_dict["ic_pitch"] = [-5, 0, 5]
validation_dict["ic_yaw"] = [0]
run_validation(validation_dict, multiprocessing.cpu_count())