-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRelation.agda
334 lines (273 loc) · 12.1 KB
/
Relation.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
{-# OPTIONS --rewriting #-}
-- --overlapping-instances
-- an attempt with rewrite rules, but by postulating the model rather than defining a record (because rewrite rules don't work)
-- in this file: definition of the functional relation, and proof that the relation is indeed functional
-- open import HoTT.Base
open import Level
open import EqLib renaming ( _∙_ to _◾_ ; transport to tr ; fst to ₁ ; snd to ₂)
open import Data.Nat renaming (suc to S)
open import Lib
module Relation {k : Level.Level} where
open import Syntax {k} as S
import ModelRew {k} as M
-- module M = Model {α}
-- infixl 5 _^^_
-- _^^_ : Conp → Conp → Conp
-- Γ ^^ Δ = Γ Syntax.^^ Δ
-- Logical relation between the presyntax and the M model expressing
-- that presyntactic and semantic values have the same structure
-- in these versions, we assume for Ty~' that Γm is already realted to Γw
-- and the same for Tm~' and Var~' (although Var~' enforces that Γm is related to Γw)
-- the advantage : I won't need to show that Ty~' implies Con~'
-- However I would still need to prove that _w are HProp (consider you would state
-- the main theorem for Ty~' and the case of context extension)
Con~ : {Γp : Conp}(Γw : Γp ⊢) → M.Con → Set (lmax M.i (lmax M.j k))
Ty~ : ∀ {Γ A} (Aw : Γ ⊢ A) {Γm} (Am : M.Ty Γm) → Set (lmax M.i (lmax M.j k))
Tm~ : ∀ {Γ A t} (tw : Γ ⊢ t ∈ A) {Γm} {Am : M.Ty Γm}(tm : M.Tm Γm Am) → Set (lmax M.i (lmax M.j k))
Var~ : ∀ {Γ A x} (xw : Γ ⊢ x ∈v A) {Γm} {Am : M.Ty Γm}(tm : M.Tm Γm Am) → Set (lmax M.i (lmax M.j k))
-- Con~ {Γ}Γw Γm = {!!}
-- Sub~ {Γ}{Δ}{σ}σw {Γm}{Δm}σm = {!!}
Con~ {.∙p} ∙w Γm =
Lift { ℓ = lmax M.j k} (Γm ≡ M.∙)
-- HoTT.Lift { j = M.j} (Γm ≡ M.∙)
Con~ {.(_ ▶p _)} (▶w Γw Aw) Δm =
Σ (∃ (Con~ Γw)) λ Γm →
Σ (∃ (Ty~ Aw {₁ Γm})) λ Am →
Δm ≡ (₁ Γm M.▶ ₁ Am )
-- Ty~ {Γ}{E} Ew {Cm} Em = {!Ew!}
Ty~ (Uw Γw) {Cm} Em = Lift {ℓ = lmax M.j k} (Em ≡ M.U )
Ty~ {Γ} {.(ΠΠp ( _) _)} (Πw Γw Aw Bw) {Cm} Em =
Σ (∃ (Tm~ Aw {Cm} {M.U})) λ am →
Σ (∃ (Ty~ Bw {Cm M.▶ M.El (₁ am)} )) λ Bm →
Em ≡ M.Π (₁ am) (₁ Bm)
Ty~ {Γ} (ΠNIw Γw {T}{Bp} Bw) {Cm} Em =
Σ (∀ a → ∃ (Ty~ (Bw a) {Cm} )) λ Bm →
Em ≡ M.ΠNI (λ a → ₁ (Bm a) )
Ty~ {Γ} {.(Elp _)} (Elw Γw aw) {Cm} Em =
Σ (∃ (Tm~ aw {Cm} {M.U})) λ am →
-- HoTT.Lift (Em ≡ M.El (₁ am))
(Em ≡ M.El (₁ am))
Tm~ {Γ} {E} {.(V _)} (vw xw) {Cm} {Em} zm = (Var~ xw zm)
Tm~ (appw Γw aw Bw tw uw) {Δm} {Em} zm =
Σ (∃ (Tm~ aw {Δm} {M.U })) λ am →
Σ (∃ (Ty~ Bw {Δm M.▶ M.El (₁ am)})) λ Bm →
Σ (∃ (Tm~ tw {Δm} {M.Π (₁ am) (₁ Bm)})) λ tm →
Σ (∃ (Tm~ uw {Δm} {M.El (₁ am)})) λ um →
Σ (Em ≡ (₁ Bm M.[ M.< ₁ um > ]T) ) λ eC →
zm == (₁ tm) M.$ (₁ um) [ M.Tm Δm ↓ eC ]
Tm~ {t = appNI t u} (appNIw Γw {T} {Bp} Bw tw u) {Δm} {Em} zm =
Σ (∀ a → ∃ (Ty~ (Bw a) {Δm} )) λ Bm →
Σ (∃ (Tm~ tw {Δm} {M.ΠNI (λ a → ₁ (Bm a))})) λ tm →
Σ (Em ≡ (₁ (Bm u)) ) λ eC →
zm == (₁ tm) M.$NI u [ M.Tm Δm ↓ eC ]
{- INF
Tm~ {t = appNI t u} (appInfw Γw {T} {Bp} Bw tw u) {Δm} {Em} zm =
Σ (∀ a → ∃ (Tm~ (Bw a) {Δm} )) λ Bm →
Σ (∃ (Tm~ tw {Δm} {M.El (M.ΠInf (λ a → ₁ (Bm a)))})) λ tm →
Σ (Em ≡ M.El (₁ (Bm u)) ) λ eC →
zm == (₁ tm) M.$Inf u [ M.Tm Δm ↓ eC ]
Tm~ {Γ} (ΠInfw Γw {T}{Bp} Bw) {Cm} {Em} zm =
Σ (∀ a → ∃ (Tm~ (Bw a) {Cm} )) λ Bm →
Σ (Em ≡ M.U) λ eE →
zm == M.ΠInf (λ a → ₁ (Bm a) ) [ M.Tm _ ↓ eE ]
-}
-- Var~ {Γ}{E}{x} xw {Cm}{Em} xm = {!Ew!}
Var~ (V0w Γw Aw) {Cm} {Em} xm =
Σ (∃ (Con~ Γw )) λ Γm →
Σ (∃ (Ty~ Aw {₁ Γm} )) λ Am →
Σ (Cm ≡ (₁ Γm M.▶ ₁ Am)) λ eC →
Σ (Em == ₁ Am M.[ M.wk ]T [ M.Ty ↓ eC ]) λ eE →
xm == M.vz [ (λ CE → M.Tm (₁ CE)(₂ CE)) ↓ pair= eC eE ]
Var~ (VSw Γw Aw Bw xw) {Cm} {Em} zm =
Σ (∃ (Con~ Γw )) λ Γm →
Σ (∃ (Ty~ Aw {₁ Γm} )) λ Am →
Σ (∃ (Ty~ Bw {₁ Γm} )) λ Bm →
Σ (∃ (Var~ xw {₁ Γm}{₁ Bm})) λ xm →
Σ (Cm ≡ (₁ Γm M.▶ ₁ Am)) λ eC →
Σ (Em == ₁ Bm M.[ M.wk ]T [ M.Ty ↓ eC ]) λ eE →
zm == M.vs (₁ xm) [ (λ CE → M.Tm (₁ CE)(₂ CE)) ↓ pair= eC eE ]
-- λ um → (Cm , zm) ≡ M.subT Δm (M.El Δm (₁ am)) (₁ um) (₁ Bm) ,
-- M.app Δm (₁ am) (₁ Bm) (₁ tm) (₁ um)
Sub~ : ∀ {Γ Δ σ} (σw : Γ ⊢ σ ⇒ Δ) {Γm Δm} (σm : M.Sub Γm Δm) → Set (lmax M.i (lmax M.j k))
-- Sub~ {Γ} {.∙p} {.nil} nilw {Γm} {Δm} σm = {!(Δm , σm) ≡ (M.∙ , M.ε )!}
Sub~ {Γ} {.∙p} {.nil} nilw {Γm} {Δm} σm =
Σ (Δm ≡ M.∙ ) λ eC → Lift {ℓ = k} (σm == M.ε [ M.Sub Γm ↓ eC ])
-- _,_ {A = M.Con}{ M.Sub Γm} Δm σm ≡ (M.∙ , M.ε )
Sub~ {Γ} {.(_ ▶p _)} (,sw Δw σw Aw tw) {Γm} {Cm} sm =
Σ (∃ (Con~ Δw)) λ Δm →
Σ (∃ (Sub~ σw {Γm} {₁ Δm})) λ σm →
Σ (∃ (Ty~ Aw {₁ Δm})) λ Am →
Σ (∃ (Tm~ tw { Γm } {Am = ₁ Am M.[ ₁ σm ]T})) λ tm →
Σ (Cm ≡ (₁ Δm M.▶ ₁ Am)) λ eC →
sm == ₁ σm M.,s ₁ tm [ M.Sub Γm ↓ eC ]
ConP : ∀ {Γp} Γw → is-prop (∃ (Con~ {Γp} Γw))
TyP : ∀ {Γ A} (Aw : Γ ⊢ A) Γm → is-prop (∃ (Ty~ Aw {Γm}))
TmP : ∀ {Γ A t} (tw : Γ ⊢ t ∈ A) {Γm} (Am : M.Ty Γm) → is-prop (∃ (Tm~ tw {Γm}{Am}))
VarP : ∀ {Γ A x} (x : Γ ⊢ x ∈v A) {Γm} (Am : M.Ty Γm) → is-prop (∃ (Var~ x {Γm}{Am}))
-- new version of Agda does not support explicit arguments for instances
instance
i-ConP : ∀ {Γp} {Γw} → is-prop (∃ (Con~ {Γp} Γw))
i-TyP : ∀ {Γ A} {Aw : Γ ⊢ A} {Γm} → is-prop (∃ (Ty~ Aw {Γm}))
i-TmP : ∀ {Γ A t} {tw : Γ ⊢ t ∈ A} {Γm} {Am : M.Ty Γm} → is-prop (∃ (Tm~ tw {Γm}{Am}))
i-VarP : ∀ {Γ A x} {x : Γ ⊢ x ∈v A} {Γm} {Am : M.Ty Γm} → is-prop (∃ (Var~ x {Γm}{Am}))
i-ConP {Γw = Γw} = ConP Γw
i-TyP {Aw = Aw}{Γm = Γm} = TyP Aw Γm
i-TmP {tw = tw}{Am = Am} = TmP tw Am
i-VarP {Am = Am} = VarP _ Am
-- Var~ : ∀ {Γ A x} (xw : Varw Γ A x) {Γm} {Am : M.Ty Γm}(tm : M.Tm Γm Am) → Set (lmax M.i M.j)
ConP {.∙p} ∙w = Lift-pathto-is-prop M.∙
ConP {.(_ ▶p _)} (▶w Cw Aw) =
equiv-preserves-level
(Σ₁-×-comm ∘e
Σ-emap-r λ Γm → Σ₁-×-comm)
{{ Σ-level (ConP Cw)
(λ x →
Σ-level (TyP Aw (₁ x)) (λ x₁ → pathto-is-prop (₁ x M.▶ ₁ x₁)))
}}
-- TyP {Γ}{ A} Aw Γm = {!!}
TyP (Uw Γw) Γm = Lift-pathto-is-prop M.U
TyP {Γ} {.(ΠΠp ( _) _)} (Πw Γw Aw Bw) Γm =
equiv-preserves-level
(
Σ₁-×-comm ∘e Σ-emap-r λ Am' →
Σ₁-×-comm
)
{{ Σ-level (TmP Aw {Γm} M.U) λ Am' →
Σ-level (TyP Bw (Γm M.▶ M.El (₁ Am')))
(λ x → pathto-is-prop (M.Π (₁ Am') (₁ x)))
}}
TyP {Γ} (ΠNIw Γw {T}{Bp} Bw) Γm =
equiv-preserves-level
(
Σ₁-×-comm
-- ∘e Σ-emap-r λ Am' → {!!}
)
-- This needs funext actually
{{ Σ-level (Π-level (λ a → TyP (Bw a) Γm )) λ Am' → pathto-is-prop (M.ΠNI (λ a → ₁ (Am' a))) }}
-- Σ-emap-r λ Am' →
-- ?
TyP {Γ} {.(Elp _)} (Elw Γw aw) Γm =
equiv-preserves-level Σ₁-×-comm
{{ Σ-level (TmP aw {Γm} M.U) λ Am' → pathto-is-prop (M.El (₁ Am')) }}
TmP {Γ} {A} {.(V _)} (vw xw) {Γm} Am = VarP xw Am
TmP (appw Γw aw Bw tw uw) {Γm} Am =
equiv-preserves-level
(
Σ₁-×-comm ∘e Σ-emap-r λ Am' →
Σ₁-×-comm ∘e Σ-emap-r λ Bm' →
Σ₁-×-comm ∘e Σ-emap-r λ tm' →
Σ₁-×-comm ∘e Σ-emap-r λ um' →
Σ₁-×-comm
)
{{ Σ-level (TmP aw {Γm} M.U) λ Am' →
Σ-level (TyP Bw _) λ Bm' →
Σ-level (TmP tw _) λ tm' →
Σ-level (TmP uw _) λ um' →
Σ-level (all-paths-is-prop uip ) λ eC' → pathOverto-is-prop (M.Tm Γm) eC' _
-- raise-level ⟨-2⟩ {!!}
}}
TmP {t = appNI t u} (appNIw Γw {T}{Bp} Bw tw u) {Γm} Am =
equiv-preserves-level
(
Σ₁-×-comm ∘e Σ-emap-r λ Am' →
Σ₁-×-comm ∘e Σ-emap-r λ Bm' →
Σ₁-×-comm
)
{{ Σ-level (Π-level (λ a → TyP (Bw a) Γm )) λ Bm' →
Σ-level (TmP tw _) λ tm' →
Σ-level (all-paths-is-prop uip ) λ eC' →
pathOverto-is-prop (M.Tm Γm) eC' _
}}
{- INF
TmP {t = appNI t u} (appInfw Γw {T}{Bp} Bw tw u) {Γm} Am =
equiv-preserves-level
(
Σ₁-×-comm ∘e Σ-emap-r λ Am' →
Σ₁-×-comm ∘e Σ-emap-r λ Bm' →
Σ₁-×-comm
)
{{ Σ-level (Π-level (λ a → TmP (Bw a) M.U)) λ Bm' →
Σ-level (TmP tw _) λ tm' →
Σ-level (all-paths-is-prop uip ) λ eC' →
pathOverto-is-prop (M.Tm Γm) eC' _
}}
TmP {Γ} (ΠInfw Γw {T}{Bp} Bw) {Γm} Am =
equiv-preserves-level
(
Σ₁-×-comm ∘e Σ-emap-r λ Am' →
Σ₁-×-comm
)
-- This needs funext actually
{{ Σ-level (Π-level (λ a → TmP (Bw a) _)) λ Bm' →
Σ-level ( all-paths-is-prop uip ) λ eT →
pathOverto-is-prop (M.Tm Γm) eT _ }}
-}
VarP (V0w Γw Aw) {Γm} Am =
equiv-preserves-level
(
Σ₁-×-comm ∘e Σ-emap-r λ Γm →
Σ₁-×-comm ∘e Σ-emap-r λ Am →
Σ₁-×-comm ∘e Σ-emap-r λ eC →
Σ₁-×-comm
)
{{ Σ-level ( ConP Γw ) λ Γm' →
Σ-level (TyP Aw (₁ Γm')) λ Am' →
Σ-level ( all-paths-is-prop uip ) λ eC' →
Σ-level (uip-over-prop _ _ _ _) λ eE' →
pathOverto-is-prop _ _ _
}}
VarP (VSw Γw Aw Bw xw) {Γm} Am =
equiv-preserves-level
(
Σ₁-×-comm ∘e Σ-emap-r λ Γm →
Σ₁-×-comm ∘e Σ-emap-r λ Am →
Σ₁-×-comm ∘e Σ-emap-r λ Bm →
Σ₁-×-comm ∘e Σ-emap-r λ xm →
Σ₁-×-comm ∘e Σ-emap-r λ eC →
Σ₁-×-comm
)
{{ Σ-level (ConP Γw ) λ Γm' →
Σ-level (TyP Aw (₁ Γm')) λ Am' →
Σ-level (TyP Bw _) λ Bm' →
Σ-level (VarP xw _) λ xm' →
Σ-level (all-paths-is-prop uip) λ eC' →
Σ-level (uip-over-prop _ _ _ _) λ eE' →
pathOverto-is-prop _ _ _
}}
SubP : ∀ {Γ Δ s} (sw : Γ ⊢ s ⇒ Δ) Γm Δm → is-prop (∃ (Sub~ sw {Γm}{Δm}))
instance
i-SubP : ∀ {Γ Δ s} {sw : Γ ⊢ s ⇒ Δ} {Γm} {Δm} → is-prop (∃ (Sub~ sw {Γm}{Δm}))
i-SubP {sw = sw}{Γm = Γm}{Δm = Δm} = SubP sw Γm Δm
-- SubP {Γ}{Δ}{s}sw Γm Δm = {!sw!}
SubP {Γ} {.∙p} {.nil} nilw Γm Δm =
equiv-preserves-level
Σ₁-×-comm
{{ Σ-level (all-paths-is-prop uip) λ eC' →
Lift-pathOverto-is-prop _ eC' M.ε
}}
SubP {Γ} {.(_ ▶p _)} (,sw Δw sw Aw tw) Γm Δm =
equiv-preserves-level
(
Σ₁-×-comm ∘e Σ-emap-r λ Δm' →
Σ₁-×-comm ∘e Σ-emap-r λ σm' →
Σ₁-×-comm ∘e Σ-emap-r λ Am' →
Σ₁-×-comm ∘e Σ-emap-r λ tm' →
Σ₁-×-comm
)
{{ Σ-level (ConP Δw ) λ Δm' →
Σ-level ( SubP sw Γm (₁ Δm') ) λ σm' →
Σ-level ( TyP Aw (₁ Δm') ) λ Am' →
Σ-level (TmP tw (₁ Am' M.[ ₁ σm' ]T)) λ tm' →
Σ-level ( all-paths-is-prop uip ) λ eC' →
pathOverto-is-prop _ _ _
}}
-- heterogeneous
ConPh : ∀ {Γp} {Γw} {Γw'} (Γm : ∃ (Con~ {Γp} Γw))(Γm' : ∃ (Con~ {Γp} Γw'))
→ ₁ Γm ≡ ₁ Γm'
ConPh {Γ}{Γw}{Γw'} Γm Γm' rewrite prop-has-all-paths Γw Γw' |
prop-path (ConP Γw') Γm Γm' = refl
-- some helper
Σ▶~ : ∀ {Γ}{Γw : Γ ⊢} (Γm : ∃ (Con~ Γw))
{A}{Aw : Γ ⊢ A}(Am : ∃ (Ty~ Aw {₁ Γm}))
→ ∃ (Con~ (▶w Γw Aw))
Σ▶~ Γm Am = _ , Γm , Am , refl