-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModelMorphismRew.agda
485 lines (368 loc) · 13.1 KB
/
ModelMorphismRew.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
{-
Postulate a model morphism with rewrite rules, show that it is related to the syntax
-}
{-# OPTIONS --rewriting #-}
open import Level
open import EqLib renaming ( fst to ₁ ; snd to ₂ ; _∙_ to _◾_ ; transport to tr )
hiding (_∘_ ; _⁻¹ ; Π ; _$_)
open import Data.Nat renaming (suc to S)
open import Lib hiding (tr2)
module ModelMorphismRew {k : Level} where
open import Model
open import Syntax {i = k} hiding ([<>]T)
open import SyntaxIsModel {i = k} renaming (module Syn to S)
import ModelRew {k = k} as M
open import ModelMorphism
open import RelationInhabit
open import Relation {k = k}
open import RelationSubstitution
{- ----------
Uniqueness:
we postulate a morphism (with some rewrite rules) and show that it is equals
to the one we constructed
-}
postulate
m1 : CwFMor syntaxCwF M.RewCwF
-- m1base : baseCwFMor syntaxCwF M.RewCwF
-- m1next : nextCwFMor m1base
open CwFMor m1
-- Agda won't recognize ,ʳ as a legal rewrite rule
postulate
,ʳ' : ∀ {Γp Γw Ap Aw} →
let Γ = (Γp , Γw) in
let A = (Ap , Aw) in
Conʳ (Γ S.▶ A) ↦ (Conʳ Γ M.▶ Tyʳ A)
{-# REWRITE ,ʳ' #-}
postulate
,ʳ=1 : ∀ {Γ}{A} →
,ʳ {Γ}{A} ↦ refl
{-# REWRITE ,ʳ=1 #-}
-- these are true of any morphism, but
-- it is simpler to prove for the postulated morphism with rew rules
π₁ʳ : {Γ Δ : S.Con} {A : S.Ty Δ} {σ : S.Sub Γ (Δ S.▶ A)} →
(Subʳ {Γ} {Δ} (S.π₁ {Γ} {Δ} {A} σ))
≡
(M.π₁ {Conʳ Γ} {Conʳ Δ} {Tyʳ {Δ} A} (Subʳ {Γ} {Δ S.▶ A} σ))
π₁ʳ {Γ}{Δ}{A}{σ}
-- rewrite ! (S.πη {σ = σ})
=
tr (λ s → Subʳ (S.π₁ s) ≡ M.π₁ (Subʳ s))
-- {!! ( S.πη {σ = σ})!}
( S.πη {σ = σ})
(! (( ap M.π₁ ( ,sʳ {σ = S.π₁ σ}{t = S.π₂ σ} )) ◾ M.π₁β ) )
π₂ʳ : {Γ Δ : S.Con} {A : S.Ty Δ} {σ : S.Sub Γ (Δ S.▶ A)} →
(Tmʳ {Γ} {A S.[ S.π₁ σ ]T} (S.π₂ {Γ} {Δ} {A} σ))
==
(M.π₂ {Conʳ Γ} {Conʳ Δ} {Tyʳ {Δ} A} (Subʳ {Γ} {Δ S.▶ A} σ))
[ M.Tm _ ↓ []Tʳ {A = A}{σ = S.π₁ σ} ◾ ap (M._[_]T (Tyʳ A)) (π₁ʳ {σ = σ}) ]
π₂ʳ {Γ}{Δ}{A}{σ} =
≅↓ helper
where
helper :
(Tmʳ {Γ} {A S.[ S.π₁ σ ]T} (S.π₂ {Γ} {Δ} {A} σ)) ≅
(M.π₂ {Conʳ Γ} {Conʳ Δ} {Tyʳ {Δ} A} (Subʳ {Γ} {Δ S.▶ A} σ))
helper
-- rewrite ! (S.πη {σ = σ})
=
tr (λ σ →
(Tmʳ {Γ} {A S.[ S.π₁ σ ]T} (S.π₂ {Γ} {Δ} {A} σ)) ≅
(M.π₂ {Conʳ Γ} {Conʳ Δ} {Tyʳ {Δ} A} (Subʳ {Γ} {Δ S.▶ A} σ))
)
(S.πη {σ = σ})
(
(↓≅ (from-transp (M.Tm (Conʳ Γ)) ([]Tʳ {A = A}{σ = S.π₁ σ}) {u = Tmʳ (S.π₂ σ)} refl) )
∘≅
(
(↓≅ (apd M.π₂ ( ,sʳ {σ = S.π₁ σ}{t = S.π₂ σ} ))
∘≅ ↓≅ (M.π₂β {σ = Subʳ (S.π₁ σ)})
)
!≅))
wkʳ : ∀ {Γ : S.Con}{A : S.Ty Γ} →
Subʳ (S.wk {A = A}) ≡ M.wk {A = Tyʳ A}
wkʳ {Γ}{A} = π₁ʳ ◾ ap M.π₁ idʳ
vzʳ : ∀{Γ : S.Con}{A : S.Ty Γ} →
Tmʳ (S.vz {A = A}) == M.vz {A = Tyʳ A}
[ M.Tm _ ↓ []Tʳ {A = A}{σ = S.wk} ◾ ap (λ s → M._[_]T (Tyʳ A) s) wkʳ ]
vzʳ {Γ}{A} = ≅↓ (↓≅ (π₂ʳ {A = A}{σ = S.id})
∘≅ ↓≅
( apd {A = M.Sub (Conʳ Γ M.▶ Tyʳ A)(Conʳ Γ M.▶ Tyʳ A)}
(M.π₂ )
{x = Subʳ ( S.id {Γ = Γ S.▶ A})}
{y = M.id}
idʳ ))
vsʳ : ∀{Γ : S.Con}{A : S.Ty Γ}{t : S.Tm Γ A}{B : S.Ty Γ} →
Tmʳ (S.vs {B = B}t) == M.vs (Tmʳ t)
[ M.Tm _ ↓ []Tʳ {A = A}{σ = S.wk} ◾ ap (λ s → M._[_]T (Tyʳ A) s) wkʳ ]
vsʳ {Γ}{A}{x}{B} =
[]tʳ {t = x}
∙ᵈ
↓-ap-in _ ((M._[_]T (Tyʳ A)))
( apd {A = M.Sub (Conʳ (Γ S.▶ B))(Conʳ Γ) }
{B = λ s → M.Tm (Conʳ (Γ S.▶ B)) (M._[_]T (Tyʳ A) s)}
(M._[_]t (Tmʳ x)) (wkʳ {A = B}) )
postulate
m2 : UnivΠMor {ll = k} syntaxUnivΠ M.RewUnivΠ m1
open UnivΠMor m2
-- open nextCwFMor (nextcwfmor m2)
{-# REWRITE Uʳ #-}
postulate
Uʳ=1 : ∀{Γ} → Uʳ {Γ} ↦ refl
{-# REWRITE Uʳ=1 #-}
-- Agda does not accept Elʳ as a valid rewrite rule
postulate
Elʳ' : ∀ {Γ : S.Con}
{xp}{xw} →
(Tyʳ {Γ} (Elp xp , Elw (₂ Γ)xw)) ↦ (M.El (Tmʳ {Γ = Γ}{A = _ , Uw (₂ Γ)} (xp , xw)))
{-# REWRITE Elʳ' #-}
postulate
Elʳ=1 : ∀{Γ}{x} → Elʳ {Γ}{x} ↦ refl
{-# REWRITE Elʳ=1 #-}
-- Agda does not accept Πʳ as a valid rewrite rule
postulate
Πʳ' : ∀{Γ}
{ap}{aw : (₁ Γ) ⊢ ap ∈ Up }
{Bp}{Bw : ((₁ Γ) ▶p Elp ap) ⊢ Bp} →
-- let Γ = (Γp , Γw) in
let a : S.Tm Γ (S.U {Γ})
a = (ap , aw)
in
let B : S.Ty (Γ S.▶ S.El {Γ} a)
B = (Bp , Bw)
in
(Tyʳ {Γ}
(_ , Πw (₂ Γ) aw Bw))
↦
(M.Π {Conʳ Γ} (Tmʳ {Γ} {S.U {Γ}} a)
((Tyʳ {Γ S.▶ S.El {Γ} a} B)))
{-# REWRITE Πʳ' #-}
postulate
Πʳ=1 : ∀{Γ}{a}{B} → Πʳ {Γ}{a}{B} ↦ refl
{-# REWRITE Πʳ=1 #-}
-- Agda does not accept ΠNIʳ as a valid rewrite rule
postulate
ΠNIʳ' : ∀{Γ}
{T : Set k}
{Bp : T → Typ}{Bw : ∀ (a : T) → (₁ Γ) ⊢ (Bp a)} →
let B = λ a → _ , (Bw a) in
(Tyʳ {Γ}
(_ , ΠNIw (₂ Γ) Bw))
↦ (M.ΠNI {Conʳ Γ} {T}
((λ a → Tyʳ (B a))))
{-# REWRITE ΠNIʳ' #-}
postulate
ΠNIʳ=1 : ∀ {Γ}{T}{B} → ΠNIʳ {Γ}{T}{B} ↦ refl
{-# REWRITE ΠNIʳ=1 #-}
{- INF
-- Agda does not accept ΠNIʳ as a valid rewrite rule
postulate
ΠInfʳ' : ∀{Γ}
{T : Set k}
{Bp : T → Tmp}{Bw : ∀ (a : T) → (₁ Γ) ⊢ (Bp a) ∈ Up} →
-- let Γ = (Γp , Γw) in
let B = λ a → _ , (Bw a) in
(Tmʳ {Γ} {U}
(_ , ΠInfw (₂ Γ) Bw))
↦
(M.ΠInf {Conʳ Γ} {T}
-- (Tmʳ {Γ} {S.U {Γ}} a)
(
-- tr M.Ty (nextCwFMor.,ʳ m1next {A = S.El a} )
(λ a → Tmʳ {_}{U} (B a))))
{-# REWRITE ΠInfʳ' #-}
postulate
ΠInfʳ=1 : ∀ {Γ}{T}{B} → ΠInfʳ {Γ}{T}{B} ↦ refl
{-# REWRITE ΠInfʳ=1 #-}
-}
{-
This morphism satisifes the relations
-}
morCon~ : ∀ {Γ}(Γw : Γ ⊢) → Con~ Γw (Conʳ (Γ , Γw))
morTy~ : ∀ {Γ}Γw{A}(Aw : Γ ⊢ A) → Ty~ Aw (Tyʳ {Γ = (Γ , Γw)}(A , Aw))
morTm~ : ∀ {Γ}Γw{A}(Aw : Γ ⊢ A){t}(tw : Γ ⊢ t ∈ A) → Tm~ tw (Tmʳ {Γ = (Γ , Γw)}{(A , Aw)} (t , tw))
morVar~ : ∀ {Γ}Γw{A}(Aw : Γ ⊢ A){x}(xw : Γ ⊢ x ∈v A) → Var~ xw (Tmʳ {Γ = (Γ , Γw)}{(A , Aw)} (V x , vw xw))
morTy~ Γw {.Up} (Uw Γw') rewrite prop-has-all-paths Γw' Γw = lift refl
morTy~ {Γ} Γw' {.(ΠΠp ( _) _)} (Πw Γw Aw Bw)
rewrite prop-has-all-paths Γw Γw'
=
(_ , morTm~ Γw' (Uw Γw') Aw) ,
(_ , morTy~ (▶w Γw' (Elw Γw' Aw)) Bw) ,
refl
morTy~ {Γ} Γw' (ΠNIw Γw Bw) rewrite prop-has-all-paths Γw Γw'
= (λ a → _ , morTy~ Γw' (Bw a)) , refl
morTy~ {Γ} Γw' {.(Elp _)} (Elw Γw aw) rewrite prop-has-all-paths Γw' Γw =
(_ , morTm~ Γw (Uw Γw) aw ) ,
refl
morCon~ {.∙p} ∙w = Level.lift ∙ʳ
morCon~ {.(_ ▶p _)} (▶w Γw Aw) =
(_ , morCon~ Γw) ,
(_ , morTy~ Γw Aw) ,
refl
-- ,ʳ
-- morTm~ {Γ}Γw{A}Aw {t}tw = ?
morTm~ {Γ} Γw {A} Aw {.(V _)} (vw xw) = morVar~ Γw Aw xw
morTm~ Γw sBw (appw Γw' aw Bw tw uw)
=
(_ , morTm~ Γw (Uw Γw) aw) ,
(_ , morTy~ (▶w Γw (Elw Γw aw)) Bw) ,
-- {!? , ? morTm~ (▶w Γw (Elw Γw aw)) Bw!} ,
(_ , morTm~ Γw (Πw Γw aw Bw) tw) ,
(_ , morTm~ Γw (Elw Γw aw) uw) ,
(eT , et Γw' (prop-has-all-paths Γw' Γw))
where
Γ : S.Con
Γ = (_ , Γw)
ElA : S.Ty Γ
ElA = (_ , Elw Γw aw)
u : S.Tm Γ ElA
u = (_ , uw)
B : S.Ty (Γ S.▶ ElA)
B = (_ , Bw)
B[] : S.Ty Γ
B[] = (_ , sBw)
ΠAB : S.Ty Γ
ΠAB = S.Π (_ , aw) B
t : S.Tm Γ ΠAB
t = (_ , tw)
eT : (Tyʳ B[] ≡ Tyʳ B M.[ M.< Tmʳ u > ]T)
eT = ap Tyʳ {x = B[]}{y = B S.[ S.< u > ]T } (Ty= (₁[<>]T {B = B})) ◾
[<>]T {u = u}{B}
et : ∀ Γw' (e : Γw' ≡ Γw) →
(Tmʳ (app _ _ , appw Γw' aw Bw tw uw))
==
((Tmʳ t) M.$ (Tmʳ u))
[ (M.Tm (Conʳ Γ)) ↓ eT ]
et _ refl
=
help (₁[<>]T {B = B}{u = u}) _
∙ᵈ
($ʳ t u)
where
apptu = (app _ _ , appw Γw aw Bw tw uw)
-- | (₁[<>]T {B = B}{u = u})
help :
∀ {B}(e : _ ≡ B)Bw →
-- let e = (₁[<>]T {B = B}{u = u}) in
Tmʳ {Γ = Γ}apptu
== Tmʳ (app _ _ , tr (λ C → _ ⊢ _ ∈ C) ( e) (₂ apptu))
[ M.Tm (Conʳ Γ) ↓ ap Tyʳ (Ty= {A = _ , sBw}{B = (B , Bw)}e) ]
help refl Bw rewrite prop-has-all-paths sBw Bw = refl
morTm~ {Γp} Γw sBw (appNIw Γw' Bw {t = t}tw u)
rewrite prop-has-all-paths sBw (Bw u)
| prop-has-all-paths Γw Γw'
=
((λ a → _ , morTy~ Γw' (Bw a)) ,
((_ , morTm~ Γw' (ΠNIw Γw' Bw) tw) ,
(refl ,
et)))
where
et :
Tmʳ (appNI t u , appNIw Γw' Bw tw u) ≡ (Tmʳ {A = _ , ΠNIw Γw' Bw} (t , tw)) M.$NI u
et = $NIʳ (_ , tw) u
{- INF
morTm~ {Γp} Γw sBw (appInfw Γw' Bw {t = t}tw u)
rewrite prop-has-all-paths sBw (Elw Γw' (Bw u))
| prop-has-all-paths Γw Γw'
=
((λ a → _ , morTm~ Γw' (Uw Γw') (Bw a)) ,
((_ , morTm~ Γw' (Elw Γw' (ΠInfw Γw' Bw)) tw) ,
(refl ,
et)))
where
et :
Tmʳ (appNI t u , appInfw Γw' Bw tw u) ≡ (Tmʳ {A = _ , Elw Γw' (ΠInfw Γw' Bw)} (t , tw)) M.$Inf u
et = $Infʳ (_ , tw) u
morTm~ Γw' (Uw Γw'') (ΠInfw Γw Bw)
rewrite prop-has-all-paths Γw'' Γw'
| prop-has-all-paths Γw Γw'
=
-- (λ a → {! (? , ?)!}) , {!!}
(λ a → (_ , morTm~ Γw' (Uw Γw') (Bw a))) , (refl , refl)
-}
morVar~ Γw' wAw {.0} (V0w Γw Aw)
rewrite prop-has-all-paths Γw' (▶w Γw Aw)
=
(_ , morCon~ Γw) ,
(_ , morTy~ Γw Aw) ,
refl ,
(eT ,
-- ≅↓ (↓≅ {!vzʳ!})
≅↓ ( et (vw (V0w Γw Aw)))
)
where
Γ = (_ , Γw)
A = (_ , Aw)
eT : Tyʳ {Γ = (_ , ▶w Γw Aw)}
(liftT 0 _ , wAw) ≡ (Tyʳ {Γ = (_ , Γw)}A M.[ M.π₁ M.id ]T)
eT = ap Tyʳ (Ty= (wk=[wk]T Aw)) ◾ []Tʳ {A = A }{σ = S.wk} ◾ ap (λ s → M._[_]T (Tyʳ A) s) wkʳ
-- eT = ap Tyʳ (Ty= {!!}) ◾ ?
et : ∀ xw →
-- (Tmʳ (V 0 , vw (V0w Γp Γw Ap Aw)))
-- (Tmʳ {Γ = Γ S.▶ A}{A = _ , {!wkTw Aw Aw!}}(V 0 , xw))
(Tmʳ {Γ = Γ S.▶ A}{A = _ , wAw}(V 0 , xw))
≅ (M.π₂ (M.id {Conʳ (Γ S.▶ A)}))
-- [ (λ CE → M.Tm (₁ CE) (₂ CE)) ↓ (ap ((Conʳ (Γp , Γw) M.▶ Tyʳ (Ap , Aw)) ,_) eT) ]
et xw = ↓≅ (ap↓ {A = S.Ty _}{B = S.Tm (Γ S.▶ A)}{C = λ C → M.Tm _ (Tyʳ C)} Tmʳ
-- {p = (Ty= (wk=[wk]T Aw))}
{u = V 0 , xw}{v = S.vz }
(Tm=↓ (Ty= (wk=[wk]T Aw)) refl))
∘≅ ↓≅ (vzʳ {A = A})
-- et xw = =≅ {!ap (Tmʳ {A = (A S.[ S.wk ]T)}) {x = (V 0 , xw)}{y = S.vz}!} ∘≅ ↓≅ vzʳ
morVar~ {.(Γp ▶p Ap)} Γw' {.(liftT 0 Bp)} Cw {.(S xp)} (VSw {Γp} Γw {Ap} Aw {Bp} Bw {xp} xw)
rewrite prop-has-all-paths Γw' (▶w Γw Aw)
=
(_ , morCon~ Γw) ,
(_ , morTy~ Γw Aw) ,
(_ , morTy~ Γw Bw) ,
(_ , morVar~ Γw Bw xw) ,
refl ,
eT ,
≅↓ et
where
Γ = (Γp , Γw)
A = (Ap , Aw)
B = (Bp , Bw)
eT : Tyʳ {Γ = ((Γp ▶p Ap) , ▶w Γw Aw)}
(liftT 0 Bp , Cw) ≡ (Tyʳ {Γ = (_ , Γw)}(Bp , Bw) M.[ M.π₁ M.id ]T)
eT = ap Tyʳ (Ty= (wk=[wk]T Bw)) ◾ []Tʳ {A = B }{σ = S.wk} ◾ ap (λ s → M._[_]T (Tyʳ B) s) wkʳ
x = (V xp , vw xw)
sx = (V (S xp) , vw (VSw Γw Aw Bw xw))
et : (Tmʳ (V (S xp) , vw (VSw Γw Aw Bw xw)))
≅ (Tmʳ x M.[ M.π₁ M.id ]t)
et =
↓≅ (ap↓ {A = S.Ty _}{B = S.Tm (Γ S.▶ A)}{C = λ C → M.Tm _ (Tyʳ C)} Tmʳ
{p = Ty= (wk=[wk]T Bw)}
{u = sx}
{v = S.vs x}
-- {p = ?}
-- {!Tm=↓ (Ty= (wk=[wk]T Bw)) refl!}
( Tm=↓ {t = sx}{u = S.vs x}(Ty= (wk=[wk]T Bw)) (wk=[wk]t (₂ x)) )
)
∘≅ ↓≅ (vsʳ {t = x}{B = A})
morSub~ : ∀ {Γ}Γw{Δ}(Δw : Δ ⊢){σ}(σw : Γ ⊢ σ ⇒ Δ) → Sub~ σw (Subʳ {Γ = (Γ , Γw)}{(Δ , Δw)} (σ , σw))
-- morSub~ {Γ}Γw{Δ}Δw {σ}σw = ?
morSub~ {Γ} Γw {.∙p} ∙w {.nil} nilw = ∙ʳ ,
Level.lift (from-transp _ _ M.εη)
-- {!m.∙ʳ!} , {!!}
morSub~ {Γp} Γw {.(_ ▶p _)} ΔAw (,sw Δw σw Aw tw)
rewrite prop-has-all-paths ΔAw (▶w Δw Aw)
=
(_ , morCon~ Δw) ,
(_ , morSub~ Γw Δw σw) ,
(_ , morTy~ Δw Aw) ,
(_ , t~ (morTm~ Γw (Tyw[] Aw Γw σw) tw) ) ,
refl ,
,sʳ
where
Γ = _ , Γw
Δ = _ , Δw
σ : S.Sub Γ Δ
σ = _ , σw
A : S.Ty Δ
A = _ , Aw
t~ : ∀ {tm} (tm~ : Tm~ tw tm) → Tm~ tw
(tr (M.Tm (Conʳ Γ)) ([]Tʳ {A = A}{σ = σ})
tm)
t~ with
(Tyʳ (A S.[ σ ]T)) |
([]Tʳ {Γ = _ , Γw}{_ , Δw}{A = (_ , Aw)}{σ = (_ , σw)})
t~ | _ | refl = λ tm~ → tm~