-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModelMorphism.agda
260 lines (210 loc) · 8.45 KB
/
ModelMorphism.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
-- copied from finitaryQiit/modelTemplate
-- it seems it is not so useful (it does not simplify that much) that the postulated morphism lies between the syntax and the
-- model with rewrite rules
open import Level
open import EqLib renaming ( fst to ₁ ; snd to ₂ ; _∙_ to _◾_ ; transport to tr )
hiding (_∘_ ; _⁻¹ ; Π ; _$_)
open import Lib hiding (tr2)
module ModelMorphism where
open import Model
-- the distinction between base and next is
-- the idea that the base will be postulated with rewrite rules,
-- and not the next (when postulating a morphism from the syntax to
-- a model)
record CwFMor
{k : Level}{l : Level}(M : CwF {k} {l})
{i : Level}{j : Level}(N : CwF {i} {j})
: Set (Level.suc (lmax (lmax i j)(lmax k l)) )
where
private
module S = CwF M
open CwF N
field
Conʳ : S.Con → Con
Tyʳ : ∀ {Γ} → S.Ty Γ → Ty (Conʳ Γ)
Tmʳ : ∀ {Γ A} → S.Tm Γ A → Tm (Conʳ Γ) (Tyʳ A)
Subʳ : ∀ {Γ Δ} → S.Sub Γ Δ → Sub (Conʳ Γ) (Conʳ Δ)
,ʳ : ∀ {Γ A} → Conʳ (Γ S.▶ A) ≡ (Conʳ Γ ▶ Tyʳ A)
∙ʳ : Conʳ S.∙ ≡ ∙
[]Tʳ : {Γ Δ : S.Con} {A : S.Ty Δ} {σ : S.Sub Γ Δ} →
(Tyʳ (A S.[ σ ]T)) ≡ Tyʳ A [ Subʳ σ ]T
-- these were rewrite rules
[]tʳ : {Γ Δ : S.Con} {A : S.Ty Δ} {t : S.Tm Δ A} {σ : S.Sub Γ Δ} →
Tmʳ {Γ} (t S.[ σ ]t )
==
(Tmʳ {Δ} {A} t) [ Subʳ σ ]t
[ Tm _ ↓ []Tʳ ]
idʳ : {Γ : S.Con} →
(Subʳ (S.id {Γ})) ≡ id
∘ʳ : {Γ Δ : S.Con} {Σ : S.Con} {σ : S.Sub Δ Σ} {δ : S.Sub Γ Δ} →
(Subʳ (σ S.∘ δ)) ≡ ((Subʳ σ) ∘ (Subʳ δ))
εʳ : {Γ : S.Con} →
(Subʳ (S.ε {Γ})) == ε [ Sub _ ↓ ∙ʳ ]
,sʳ : {Γ Δ : S.Con} {σ : S.Sub Γ Δ} {A : S.Ty Δ}
{t : S.Tm Γ (A S.[ σ ]T)} →
(Subʳ (σ S.,s t))
==
((Subʳ σ) ,s tr (Tm _) []Tʳ (Tmʳ t))
[ Sub _ ↓ ,ʳ ]
<>ʳ : ∀ {Γ : S.Con}{A : S.Ty Γ}{t : S.Tm Γ A} →
Subʳ S.< t > == < Tmʳ t > [ Sub _ ↓ ,ʳ ]
<>ʳ {Γ}{A}{t} =
from-transp _ _
(to-transp ,sʳ ◾
,s=
idʳ
-- here we use UIP
(≅↓
(
↓≅ ( from-transp (Tm (Conʳ Γ)) []Tʳ refl ) !≅
∘≅ ( ↓≅ (ap↓ Tmʳ {p = S.[id]T}(from-transp! _ _ refl))
∘≅ ↓≅ (from-transp! (Tm (Conʳ Γ)) [id]T refl) !≅
))))
[<>]T : ∀ {Γ : S.Con}{A : S.Ty Γ}{u : S.Tm Γ A}{B : S.Ty (Γ S.▶ A)}→
Tyʳ (B S.[ S.< u > ]T) ≡ (Tyʳ B [ transport! (Sub _) ,ʳ < Tmʳ u > ]T)
[<>]T {Γ}{A}{u} = []Tʳ ∙' ap (_[_]T _ ) (to-transp! <>ʳ)
{-
I should do the proof, but now we can deduce that Subʳ commutes with π₁ and π₂
Indeed:
Let δ and t such that σ = (δ , t)
Then,
Subʳ (δ , t) = (Subʳ δ , Tmʳ t)
So
π₁ (Subʳ (δ , t)) = Subʳ δ
and
π₂ (Subʳ (δ , t)) = Tmʳ t
or equivalently,
π₁ (Subʳ σ) = Subʳ (π₁ σ)
π₂ (Subʳ σ) = Tmʳ (π₂ σ)
TODO: formalize the proof (it begins after)
-}
{-
module _
{k : Level}{l : Level}{M : CwF {k} {l}}
{i : Level}{j : Level}{N : CwF {i} {j}}{m : CwFMor M N} where
private
module S = CwF M
open CwF N
open CwFMor m
π₁ʳ : {Γ Δ : S.Con} {A : S.Ty Δ} {σ : S.Sub Γ (Δ S.▶ A)} →
(Subʳ {Γ} {Δ} (S.π₁ {Γ} {Δ} {A} σ))
≡
(π₁ {Conʳ Γ} {Conʳ Δ} {Tyʳ {Δ} A} (tr (Sub _) ,ʳ (Subʳ {Γ} {Δ S.▶ A} σ)))
π₁ʳ {Γ}{Δ}{A}{σ} =
(Subʳ {Γ} {Δ} (S.π₁ {Γ} {Δ} {A} σ))
=⟨ {!!} ⟩
(π₁
((Subʳ {Γ} {Δ} (S.π₁ {Γ} {Δ} {A} σ)) ,s tr (Tm _) []Tʳ (Tmʳ (S.π₂ {Γ} {Δ} {A} σ))))
=⟨ {!!} ⟩
(π₁ (Subʳ (S.π₁ σ S.,s S.π₂ σ)))
=⟨ {!!} ⟩
(π₁ {Conʳ Γ} {Conʳ Δ} {Tyʳ {Δ} A} (tr (Sub _) ,ʳ (Subʳ {Γ} {Δ S.▶ A} σ)))
∎
-- version alternative
-- π₁ʳ : {Γ Δ : S.Con} {A : S.Ty Δ} {σ : S.Sub Γ Δ}{t : Tm Γ (A [ σ ]T)} →
-- (Subʳ {Γ} {Δ} σ)
-- ≡
-- (π₁ {Conʳ Γ} {Conʳ Δ} {Tyʳ {Δ} A} (tr (Sub _) ,ʳ (Subʳ {Γ} {Δ S.▶ A} σ)))
π₂ʳ : {Γ Δ : S.Con} {A : S.Ty Δ} {σ : S.Sub Γ (Δ S.▶ A)} →
(Tmʳ {Γ} {S._[_]T {Γ} {Δ} A (S.π₁ {Γ} {Δ} {A} σ)}
(S.π₂ {Γ} {Δ} {A} σ))
==
(π₂ {Conʳ Γ} {Conʳ Δ} {Tyʳ {Δ} A}
(tr (Sub _) ,ʳ (Subʳ {Γ} {Δ S.▶ A} σ)))
[ Tm _ ↓ []Tʳ ◾ ap ( _[_]T (Tyʳ _) ) π₁ʳ ]
π₂ʳ {Γ}{Δ}{A}{σ} = {!!}
-}
module _ {ll : Level}
{k : Level}{l : Level}{M : CwF {k} {l}}(MM : UnivΠ {k = ll} M)
{i : Level}{j : Level}{N : CwF {i} {j}}(NN : UnivΠ {k = ll} N)
(mor : CwFMor M N)
where
open CwFMor mor
open CwF N
open UnivΠ NN
private
module S = CwFUnivΠ MM
-- I do Univ and Π parts in different records because
-- I need [<>^El]Tʳ before app
record UnivMor : Set (Level.suc (lmax (lmax i j)(lmax k l)) ) where
field
Uʳ : {Γ : S.Con} → Tyʳ (S.U {Γ}) ≡ U
Elʳ : {Γ : S.Con} {a : S.Tm Γ (S.U {Γ})} →
(Tyʳ {Γ} (S.El a)) ≡ (El (tr (Tm _) Uʳ (Tmʳ a)))
[<>^El]Tʳ :
∀ {Γ}{a : S.Tm Γ S.U}{B : S.Ty (Γ S.▶ S.El a)}
(u : S.Tm Γ (S.El a)) →
Tyʳ (B S.[ S.< u > ]T) ≡
(tr Ty (,ʳ ∙' ap (_▶_ (Conʳ Γ)) Elʳ) (Tyʳ B) [
< tr (Tm (Conʳ Γ)) Elʳ (Tmʳ u) > ]T)
[<>^El]Tʳ {Γ}{a}{B}u =
[<>]T ∙'
J (λ C e →
(Tyʳ B [ transport! (Sub (Conʳ Γ)) ,ʳ < Tmʳ u > ]T) ≡
(tr Ty (,ʳ ∙' ap (_▶_ (Conʳ Γ)) e) (Tyʳ B) [
< tr (Tm (Conʳ Γ)) e (Tmʳ u) > ]T)
)
(
J (λ C e → ∀ <u> →
Tyʳ B [ transport! (Sub (Conʳ Γ)) e <u> ]T ≡
tr Ty e (Tyʳ B) [ <u> ]T
)
(λ _ → refl)
,ʳ
< Tmʳ u >
)
Elʳ
record ΠMor (um : UnivMor) : Set (Level.suc (lmax ll (lmax (lmax i j)(lmax k l))) ) where
-- module S = UnivΠ MM
-- module NN = UnivΠ NN
open UnivMor um
field
Πʳ : {Γ : S.Con} {a : S.Tm Γ (S.U {Γ})} {B : S.Ty (Γ S.▶ S.El {Γ} a)} →
_≡_ {i} {Ty (Conʳ Γ)} (Tyʳ {Γ} (S.Π {Γ} a B))
(Π {Conʳ Γ} (tr (Tm _) Uʳ (Tmʳ {Γ} {S.U {Γ}} a))
(tr Ty (,ʳ ∙' ap ( _▶_ _ ) Elʳ) (Tyʳ {Γ S.▶ S.El {Γ} a} B)))
-- appʳ : {Γ : S.Con} {a : S.Tm Γ (S.U {Γ})} {B : S.Ty (Γ S.▶ S.El {Γ} a)}
-- {t : S.Tm Γ (S.Π {Γ} a B)} →
-- (Tmʳ {Γ S.▶ S.El {Γ} a} {B} (S.app {Γ} {a} {B} t))
-- ==
-- (app {Conʳ Γ}
-- (tr (Tm _) Πʳ (Tmʳ {Γ} {S.Π {Γ} a B} t)))
-- [ (λ x → Tm (₁ x)(₂ x)) ↓
-- pair= (,ʳ ◾ ap ( _▶_ _ ) Elʳ) (from-transp _ _ refl) ]
$ʳ : ∀ {Γ}{a : S.Tm Γ S.U}{B : S.Ty (Γ S.▶ S.El a)}(t : S.Tm Γ (S.Π a B))
-- this q , e is to stop reduction
(u : S.Tm Γ (S.El a))
→
let e = [<>^El]Tʳ u in
-- {e}(q : e ≡ [<>^El]Tʳ u)→
Tmʳ (t S.$ u) ==
(tr (Tm _) Πʳ (Tmʳ t) $
tr (Tm _) Elʳ (Tmʳ u)) [ Tm _ ↓ e
-- [<>^El]Tʳ u
]
-- []Tʳ ◾ ap (λ s → Tyʳ B [ s ]T) (to-transp! <>ʳ) ◾ {!!} ]
ΠNIʳ : {Γ : S.Con} {T : Set ll} {B : T → S.Ty Γ} →
(Tyʳ {Γ} (S.ΠNI B)) ≡ (ΠNI (λ a → Tyʳ (B a)))
-- (tr Ty (,ʳ ∙' ap ( _▶_ _ ) Elʳ) (Tyʳ {Γ S.▶ S.El {Γ} a} B)))
$NIʳ : ∀ {Γ}{T : Set ll}{B : T → S.Ty Γ}(t : S.Tm Γ (S.ΠNI B))
(u : T)
→
Tmʳ (t S.$NI u) ≡ tr (Tm _) ΠNIʳ (Tmʳ t) $NI u
{- INF
ΠInfʳ : {Γ : S.Con} {T : Set ll} {B : T → S.Tm Γ S.U} →
(Tmʳ {Γ} (S.ΠInf B)) ==
(ΠInf {Conʳ Γ} {T = T} λ a → tr (Tm _) Uʳ (Tmʳ (B a)) ) [ Tm _ ↓ Uʳ ]
$Infʳ : ∀ {Γ}{T : Set ll}{B : T → S.Tm Γ S.U}(t : S.Tm Γ (S.El (S.ΠInf B)))
(u : T)
→
Tmʳ (t S.$Inf u) == ( (tr (Tm _) (Elʳ ◾ ap El (to-transp ΠInfʳ)) (Tmʳ t)) $Inf u)
[ Tm _ ↓ Elʳ ]
-}
-- {!Tmʳ (t S.$ u) == ((Tmʳ t) $ (Tmʳ u)) [ Tm _ ↓ ? ]!}
-- $ʳ = {!!}
record UnivΠMor : Set (Level.suc (lmax ll (lmax (lmax i j)(lmax k l)) )) where
field
univmor : UnivMor
Πmor : ΠMor univmor
open UnivMor univmor public
open ΠMor Πmor public