Skip to content

Commit 766a705

Browse files
committed
translation of titles
1 parent 27a7bc1 commit 766a705

File tree

8 files changed

+45
-46
lines changed

8 files changed

+45
-46
lines changed

Statistical_Learning.html

Lines changed: 34 additions & 34 deletions
Large diffs are not rendered by default.
Loading
Loading

code/030_Exploratory.R

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -132,7 +132,7 @@ corrplot = ggplotly( ggcorrplot(corr_matrix, hc.order = TRUE,
132132
outline.col = "white",
133133
#ggtheme = ggplot2::theme_gray,
134134
colors = c("#6D9EC1", "white", "#E46726")) +
135-
ggtitle("Matrice di correlazione"))
135+
ggtitle("Correlation matrix"))
136136
# ********** Saving a file ******************* #
137137
file_name = paste0( folder, "/corrplot.Rdata")
138138
save( corrplot, file = file_name)
@@ -168,7 +168,7 @@ data_corr = data.frame( Variables = colnames( wine[ , 1:11]),
168168
corr_Y = ggplot(data_corr, aes( Variables, Spearman, fill = Variables, text = paste('Kendall:', Kendall, "\n",
169169
'Pearson:', Pearson, "\n" ))) +
170170
geom_bar( stat = "identity", position='stack') +
171-
ggtitle( "Correlazione della variabile Qualità" ) + guides( fill = FALSE ) +
171+
ggtitle( "Quality variable correlation" ) + guides( fill = FALSE ) +
172172
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
173173
ylab("Spearman's correlation")
174174
# theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1))
@@ -189,7 +189,7 @@ df$Relative_Freq = paste( round( df$Frequencies/sum(df$Frequencies)*100, 1), '%'
189189
quality_distr = ggplot(data=df, aes(x=Quality, y=Frequencies, fill = Quality)) +
190190
geom_bar(stat="identity") +
191191
geom_text(aes(label=Relative_Freq), vjust=-5, color="black") + #
192-
ggtitle( 'Qualità - Distribuzione di frequenza')
192+
ggtitle( 'Quality - Frequency Distribution')
193193

194194
quality_distr = ggplotly( quality_distr )
195195

@@ -201,4 +201,3 @@ save( quality_distr, file = file_name)
201201

202202
rm(list= ls())
203203

204-
cat('\n\n SCRIPT ESEGUITO CORRETTAMENTE!! \n\n')

code/076_Modeling_Classification.R

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -327,11 +327,11 @@ elnet_validation = ggplot(data = elnet_data, aes( x = lambda, group = alpha,
327327
# "Precisione nominale:", Precision) +
328328
geom_line( aes( y = Accuracy, color = alpha )) +
329329
geom_point( aes( y = Accuracy, color = alpha ), show.legend = F) +
330-
ggtitle( "Validazione parametri Elastic Net" ) +
330+
ggtitle( "Elastic Net validation" ) +
331331
theme(plot.title = element_text(size = 15, face = "bold"))
332332

333333
ply_val_elnet = ggplotly( elnet_validation ) %>%
334-
layout(title = "Validazione parametri Elastic Net",
334+
layout(title = "Elastic Net validation",
335335
legend = list(orientation = "v")) # , y = 0, x = 0))
336336

337337
save_plot( ply_val_elnet, type = "CLASSIFICATION")
@@ -392,12 +392,12 @@ gam_validation = ggplot(data = gam_data, aes( x = df)) +
392392
geom_line( aes( y = Accuracy, color = 'red' )) +
393393
geom_point( aes( y = Accuracy, color = 'red' ), show.legend = F) +
394394
geom_ribbon(aes(ymin=Accuracy-AccuracySD, ymax=Accuracy+AccuracySD), linetype=2, alpha=0.1) +
395-
ggtitle( "Validazione parametri GAM" ) +
395+
ggtitle( "GAM validation" ) +
396396
theme(plot.title = element_text(size = 15, face = "bold")) +
397397
scale_x_continuous(breaks=1:10)
398398

399399
ply_val_gam = ggplotly( gam_validation ) %>%
400-
layout(title = "Validazione parametri GAM", showlegend = F)
400+
layout(title = "GAM validation", showlegend = F)
401401
# legend = list(orientation = "v")) # , y = 0, x = 0))
402402
save_plot( ply_val_gam, type = "CLASSIFICATION")
403403

@@ -467,7 +467,7 @@ knn_kappa = ggplot(data = cv_df, aes(x = k)) +
467467
knn_kappa = ggplotly( knn_kappa )
468468

469469
knn_cv_plot = subplot( knn_acc, knn_kappa ) %>%
470-
layout(title = "Validazione parametri knn - Accuratezza vs Kappa", legend = list(orientation = "v"))
470+
layout(title = "knn validation - Accuracy vs Kappa", legend = list(orientation = "v"))
471471

472472

473473
save_plot( knn_cv_plot, type = 'CLASSIFICATION')

markdown/100_main.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@ library('DT')
6060
```
6161

6262

63-
```{r child = '250_REGURALISED_METHODS.Rmd'}
63+
```{r child = '250_REGULARISED_METHODS.Rmd'}
6464
```
6565

6666

markdown/150_Introduction.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -82,7 +82,7 @@ For this purpose, the correlation matrix computed on the whole dataset is report
8282

8383

8484
```{r, fig.width=9.5, fig.height=6, echo=FALSE}
85-
file = "results/EXPLORATORY_ANALYSES/corrplot.Rdata"
85+
file = "../results/EXPLORATORY_ANALYSES/corrplot.Rdata"
8686
load( file )
8787
corrplot
8888

markdown/220_LDA.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@ load( file )
3838
file = "../results/MODELING/CLASSIFICATION/canonical_variable2.Rdata"
3939
load( file )
4040
41-
subplot( canonical_variable, canonical_variable2) %>% layout( title = 'Variabile Canonica')
41+
subplot( canonical_variable, canonical_variable2) %>% layout( title = 'Canonical variable')
4242
4343
```
4444

0 commit comments

Comments
 (0)