Skip to content

Commit

Permalink
translation of titles
Browse files Browse the repository at this point in the history
  • Loading branch information
amacaluso committed Jul 31, 2019
1 parent 27a7bc1 commit 766a705
Show file tree
Hide file tree
Showing 8 changed files with 45 additions and 46 deletions.
68 changes: 34 additions & 34 deletions Statistical_Learning.html

Large diffs are not rendered by default.

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
7 changes: 3 additions & 4 deletions code/030_Exploratory.R
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,7 @@ corrplot = ggplotly( ggcorrplot(corr_matrix, hc.order = TRUE,
outline.col = "white",
#ggtheme = ggplot2::theme_gray,
colors = c("#6D9EC1", "white", "#E46726")) +
ggtitle("Matrice di correlazione"))
ggtitle("Correlation matrix"))
# ********** Saving a file ******************* #
file_name = paste0( folder, "/corrplot.Rdata")
save( corrplot, file = file_name)
Expand Down Expand Up @@ -168,7 +168,7 @@ data_corr = data.frame( Variables = colnames( wine[ , 1:11]),
corr_Y = ggplot(data_corr, aes( Variables, Spearman, fill = Variables, text = paste('Kendall:', Kendall, "\n",
'Pearson:', Pearson, "\n" ))) +
geom_bar( stat = "identity", position='stack') +
ggtitle( "Correlazione della variabile Qualità" ) + guides( fill = FALSE ) +
ggtitle( "Quality variable correlation" ) + guides( fill = FALSE ) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
ylab("Spearman's correlation")
# theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1))
Expand All @@ -189,7 +189,7 @@ df$Relative_Freq = paste( round( df$Frequencies/sum(df$Frequencies)*100, 1), '%'
quality_distr = ggplot(data=df, aes(x=Quality, y=Frequencies, fill = Quality)) +
geom_bar(stat="identity") +
geom_text(aes(label=Relative_Freq), vjust=-5, color="black") + #
ggtitle( 'Qualità - Distribuzione di frequenza')
ggtitle( 'Quality - Frequency Distribution')

quality_distr = ggplotly( quality_distr )

Expand All @@ -201,4 +201,3 @@ save( quality_distr, file = file_name)

rm(list= ls())

cat('\n\n SCRIPT ESEGUITO CORRETTAMENTE!! \n\n')
10 changes: 5 additions & 5 deletions code/076_Modeling_Classification.R
Original file line number Diff line number Diff line change
Expand Up @@ -327,11 +327,11 @@ elnet_validation = ggplot(data = elnet_data, aes( x = lambda, group = alpha,
# "Precisione nominale:", Precision) +
geom_line( aes( y = Accuracy, color = alpha )) +
geom_point( aes( y = Accuracy, color = alpha ), show.legend = F) +
ggtitle( "Validazione parametri Elastic Net" ) +
ggtitle( "Elastic Net validation" ) +
theme(plot.title = element_text(size = 15, face = "bold"))

ply_val_elnet = ggplotly( elnet_validation ) %>%
layout(title = "Validazione parametri Elastic Net",
layout(title = "Elastic Net validation",
legend = list(orientation = "v")) # , y = 0, x = 0))

save_plot( ply_val_elnet, type = "CLASSIFICATION")
Expand Down Expand Up @@ -392,12 +392,12 @@ gam_validation = ggplot(data = gam_data, aes( x = df)) +
geom_line( aes( y = Accuracy, color = 'red' )) +
geom_point( aes( y = Accuracy, color = 'red' ), show.legend = F) +
geom_ribbon(aes(ymin=Accuracy-AccuracySD, ymax=Accuracy+AccuracySD), linetype=2, alpha=0.1) +
ggtitle( "Validazione parametri GAM" ) +
ggtitle( "GAM validation" ) +
theme(plot.title = element_text(size = 15, face = "bold")) +
scale_x_continuous(breaks=1:10)

ply_val_gam = ggplotly( gam_validation ) %>%
layout(title = "Validazione parametri GAM", showlegend = F)
layout(title = "GAM validation", showlegend = F)
# legend = list(orientation = "v")) # , y = 0, x = 0))
save_plot( ply_val_gam, type = "CLASSIFICATION")

Expand Down Expand Up @@ -467,7 +467,7 @@ knn_kappa = ggplot(data = cv_df, aes(x = k)) +
knn_kappa = ggplotly( knn_kappa )

knn_cv_plot = subplot( knn_acc, knn_kappa ) %>%
layout(title = "Validazione parametri knn - Accuratezza vs Kappa", legend = list(orientation = "v"))
layout(title = "knn validation - Accuracy vs Kappa", legend = list(orientation = "v"))


save_plot( knn_cv_plot, type = 'CLASSIFICATION')
Expand Down
2 changes: 1 addition & 1 deletion markdown/100_main.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ library('DT')
```


```{r child = '250_REGURALISED_METHODS.Rmd'}
```{r child = '250_REGULARISED_METHODS.Rmd'}
```


Expand Down
2 changes: 1 addition & 1 deletion markdown/150_Introduction.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ For this purpose, the correlation matrix computed on the whole dataset is report


```{r, fig.width=9.5, fig.height=6, echo=FALSE}
file = "results/EXPLORATORY_ANALYSES/corrplot.Rdata"
file = "../results/EXPLORATORY_ANALYSES/corrplot.Rdata"
load( file )
corrplot
Expand Down
2 changes: 1 addition & 1 deletion markdown/220_LDA.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ load( file )
file = "../results/MODELING/CLASSIFICATION/canonical_variable2.Rdata"
load( file )
subplot( canonical_variable, canonical_variable2) %>% layout( title = 'Variabile Canonica')
subplot( canonical_variable, canonical_variable2) %>% layout( title = 'Canonical variable')
```

Expand Down

0 comments on commit 766a705

Please sign in to comment.