-
Notifications
You must be signed in to change notification settings - Fork 27
/
main.py
207 lines (173 loc) · 8.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from __future__ import print_function
import argparse
from math import log10
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import models
from fbpn_sr_rbpn_v1 import Net as FBPNSR_RBPN_V1
from fbpn_sr_rbpn_v2 import Net as FBPNSR_RBPN_V2
from fbpn_sr_rbpn_v3 import Net as FBPNSR_RBPN_V3
from fbpn_sr_rbpn_v4 import Net as FBPNSR_RBPN_V4, FeatureExtractor
from data import get_training_set
import utils
import pdb
import socket
import time
import cv2
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
parser.add_argument('--upscale_factor', type=int, default=4, help="super resolution upscale factor")
parser.add_argument('--batchSize', type=int, default=10, help='training batch size')
parser.add_argument('--start_epoch', type=int, default=1, help='Starting epoch for continuing training')
parser.add_argument('--nEpochs', type=int, default=60, help='number of epochs to train for')
parser.add_argument('--snapshots', type=int, default=5, help='Snapshots')
parser.add_argument('--lr', type=float, default=1e-4, help='Learning Rate. Default=0.01')
parser.add_argument('--gpu_mode', type=bool, default=True)
parser.add_argument('--threads', type=int, default=20, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--gpus', default=10, type=int, help='number of gpu')
parser.add_argument('--data_dir', type=str, default='./vimeo_triplet/sequences')
parser.add_argument('--file_list', type=str, default='tri_trainlist.txt')
parser.add_argument('--patch_size', type=int, default=0, help='0 to use original frame size')
parser.add_argument('--data_augmentation', type=bool, default=True)
parser.add_argument('--model_type', type=str, default='FBPNSR_RBPN_V4')
parser.add_argument('--pretrained_sr', default='FBPNSR_RBPN_V4_Lf_STAR.pth', help='sr pretrained base model')
parser.add_argument('--pretrained', type=bool, default=True)
parser.add_argument('--save_folder', default='weights/', help='Location to save checkpoint models')
parser.add_argument('--prefix', default='VGG_STAR_VIMEO', help='Location to save checkpoint models')
opt = parser.parse_args()
gpus_list = range(opt.gpus)
hostname = str(socket.gethostname())
cudnn.benchmark = True
print(opt)
def train(epoch):
epoch_loss = 0
model.train()
feature_extractor.eval()
for iteration, batch in enumerate(training_data_loader, 1):
input, target, target_l, flow_f, flow_b = batch[0], batch[1], batch[2], batch[3], batch[4]
if cuda:
t_im1 = Variable(input[0]).cuda(gpus_list[0])
t_im2 = Variable(input[1]).cuda(gpus_list[0])
t_flow_f = Variable(flow_f).cuda(gpus_list[0]).float()
t_flow_b = Variable(flow_b).cuda(gpus_list[0]).float()
t_target1 = Variable(target[0]).cuda(gpus_list[0])
t_target = Variable(target[1]).cuda(gpus_list[0])
t_target2 = Variable(target[2]).cuda(gpus_list[0])
t_target_l = Variable(target_l).cuda(gpus_list[0])
optimizer.zero_grad()
t0 = time.time()
pred_ht, pred_h1, pred_h2, pred_l = model(t_im1, t_im2, t_flow_f, t_flow_b)
l_mse_ht = mse_loss_calc(pred_ht, t_target)
l_mse_h1 = mse_loss_calc(pred_h1, t_target1)
l_mse_h2 = mse_loss_calc(pred_h2, t_target2)
l_mse_lr = mse_loss_calc(pred_l, t_target_l)
l_mse = l_mse_ht + 0.5*l_mse_h1 + 0.5*l_mse_h2 + l_mse_lr
l_feat_ht = feat_loss_calc(pred_ht, t_target)
l_feat_h1 = feat_loss_calc(pred_h1, t_target1)
l_feat_h2 = feat_loss_calc(pred_h2, t_target2)
l_feat_lr = feat_loss_calc(pred_l, t_target_l)
l_feat = l_feat_ht + 0.5*l_feat_h1 + 0.5*l_feat_h2 + l_feat_lr
loss = l_mse + 0.1*l_feat
t1 = time.time()
###show sample
predictiont = utils.denorm(pred_ht[0][0].cpu().data,vgg=True)
prediction1 = utils.denorm(pred_h1[0][0].cpu().data,vgg=True)
prediction2 = utils.denorm(pred_h2[0][0].cpu().data,vgg=True)
pred_l = utils.denorm(pred_l[0][0].cpu().data,vgg=True)
save_img(prediction1, "1")
save_img(predictiont, "2")
save_img(prediction2, "3")
save_img(pred_l, "lr")
epoch_loss += loss.data
loss.backward()
optimizer.step()
print("===> Epoch[{}]({}/{}): Loss: {:.4f} MSE_HR: {:.4f} Feat_HR: {:.4f} MSE_LR: {:.4f} || Timer: {:.4f} sec.".format(epoch, iteration, len(training_data_loader), loss.data, l_mse_ht, l_feat_ht, l_mse_lr, (t1 - t0)))
print("===> Epoch {} Complete: Avg. Loss: {:.4f}".format(epoch, epoch_loss / len(training_data_loader)))
def mse_loss_calc(pred, target, w_begin=0.4 , w_interval=0.6):
weight = w_begin
l_mse = 0
for i in range(len(pred)):
l_mse_ht = criterion_l1(pred[i], target)
l_mse = l_mse + weight*l_mse_ht
weight += w_interval
return l_mse
def feat_loss_calc(pred, target, w_begin=0.4 , w_interval=0.6):
weight = w_begin
l_feat = 0
hr_feature = feature_extractor(target)
for i in range(len(pred)):
sr_feature = feature_extractor(pred[i])
l_feat_ht = criterion(sr_feature, hr_feature.detach())
l_feat = l_feat + weight*l_feat_ht
weight += w_interval
return l_feat
def save_img(img, img_name):
save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0)
# save img
save_fn = 'im'+img_name+'_'+opt.model_type+opt.prefix+'.png'
cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0])
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print(net)
print('Total number of parameters: %d' % num_params)
def checkpoint(epoch):
model_out_path = opt.save_folder+str(opt.upscale_factor)+'x_'+hostname+opt.model_type+opt.prefix+"_epoch_{}.pth".format(epoch)
torch.save(model.state_dict(), model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
cuda = opt.gpu_mode
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
print('===> Loading datasets')
train_set = get_training_set(opt.data_dir, opt.upscale_factor, opt.data_augmentation, opt.file_list, opt.patch_size)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True, drop_last=True)
print('===> Building model ', opt.model_type)
if opt.model_type == 'FBPNSR_RBPN_V1':
model = FBPNSR_RBPN_V1(base_filter=256, feat = 64, num_stages=3, n_resblock=5, scale_factor=opt.upscale_factor)
elif opt.model_type == 'FBPNSR_RBPN_V2':
model = FBPNSR_RBPN_V2(base_filter=256, feat = 64, num_stages=3, n_resblock=5, scale_factor=opt.upscale_factor)
elif opt.model_type == 'FBPNSR_RBPN_V3':
model = FBPNSR_RBPN_V3(base_filter=256, feat = 64, num_stages=3, n_resblock=5, scale_factor=opt.upscale_factor)
elif opt.model_type == 'FBPNSR_RBPN_V4':
model = FBPNSR_RBPN_V4(base_filter=256, feat = 64, num_stages=3, n_resblock=5, scale_factor=opt.upscale_factor)
model = torch.nn.DataParallel(model, device_ids=gpus_list)
criterion_l1 = nn.L1Loss()
criterion = nn.MSELoss()
###VGG
feature_extractor = FeatureExtractor(models.vgg19(pretrained=True), feature_layer=35)
feature_extractor = torch.nn.DataParallel(feature_extractor, device_ids=gpus_list)
print('---------- Networks architecture -------------')
print_network(model)
print('----------------------------------------------')
if opt.pretrained:
model_name = os.path.join(opt.save_folder + opt.pretrained_sr)
if os.path.exists(model_name):
model.load_state_dict(torch.load(model_name, map_location=lambda storage, loc: storage))
print('Pre-trained SR model is loaded.')
if cuda:
model = model.cuda(gpus_list[0])
criterion = criterion.cuda(gpus_list[0])
criterion_l1 = criterion_l1.cuda(gpus_list[0])
feature_extractor = feature_extractor.cuda(gpus_list[0])
optimizer = optim.Adamax(model.parameters(), lr=opt.lr, betas=(0.9, 0.999), eps=1e-8)
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
train(epoch)
#test()
# learning rate is decayed by a factor of 10 every half of total epochs
if (epoch+1) % (opt.nEpochs/3) == 0:
for param_group in optimizer.param_groups:
param_group['lr'] /= 10.0
print('Learning rate decay: lr={}'.format(optimizer.param_groups[0]['lr']))
if (epoch+1) % (opt.snapshots) == 0:
checkpoint(epoch)
checkpoint(epoch)