Skip to content

Commit 0037bbb

Browse files
MaxGekkHyukjinKwon
authored andcommitted
[MINOR][DOC] Fix typos in the SQL migration guide
## What changes were proposed in this pull request? Fixed a few typos in the migration guide. Closes apache#23465 from MaxGekk/fix-typos-migration-guide. Authored-by: Maxim Gekk <max.gekk@gmail.com> Signed-off-by: Hyukjin Kwon <gurwls223@apache.org>
1 parent 980e6bc commit 0037bbb

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

docs/sql-migration-guide-upgrade.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ displayTitle: Spark SQL Upgrading Guide
1717

1818
- Since Spark 3.0, the `from_json` functions supports two modes - `PERMISSIVE` and `FAILFAST`. The modes can be set via the `mode` option. The default mode became `PERMISSIVE`. In previous versions, behavior of `from_json` did not conform to either `PERMISSIVE` nor `FAILFAST`, especially in processing of malformed JSON records. For example, the JSON string `{"a" 1}` with the schema `a INT` is converted to `null` by previous versions but Spark 3.0 converts it to `Row(null)`.
1919

20-
- In Spark version 2.4 and earlier, the `from_json` function produces `null`s for JSON strings and JSON datasource skips the same independetly of its mode if there is no valid root JSON token in its input (` ` for example). Since Spark 3.0, such input is treated as a bad record and handled according to specified mode. For example, in the `PERMISSIVE` mode the ` ` input is converted to `Row(null, null)` if specified schema is `key STRING, value INT`.
20+
- In Spark version 2.4 and earlier, the `from_json` function produces `null`s for JSON strings and JSON datasource skips the same independently of its mode if there is no valid root JSON token in its input (` ` for example). Since Spark 3.0, such input is treated as a bad record and handled according to specified mode. For example, in the `PERMISSIVE` mode the ` ` input is converted to `Row(null, null)` if specified schema is `key STRING, value INT`.
2121

2222
- The `ADD JAR` command previously returned a result set with the single value 0. It now returns an empty result set.
2323

@@ -27,21 +27,21 @@ displayTitle: Spark SQL Upgrading Guide
2727

2828
- In Spark version 2.4 and earlier, float/double -0.0 is semantically equal to 0.0, but users can still distinguish them via `Dataset.show`, `Dataset.collect` etc. Since Spark 3.0, float/double -0.0 is replaced by 0.0 internally, and users can't distinguish them any more.
2929

30-
- In Spark version 2.4 and earlier, users can create a map with duplicated keys via built-in functions like `CreateMap`, `StringToMap`, etc. The behavior of map with duplicated keys is undefined, e.g. map look up respects the duplicated key appears first, `Dataset.collect` only keeps the duplicated key appears last, `MapKeys` returns duplicated keys, etc. Since Spark 3.0, these built-in functions will remove duplicated map keys with last wins policy. Users may still read map values with duplicated keys from data sources which do not enforce it (e.g. Parquet), the behavior will be udefined.
30+
- In Spark version 2.4 and earlier, users can create a map with duplicated keys via built-in functions like `CreateMap`, `StringToMap`, etc. The behavior of map with duplicated keys is undefined, e.g. map look up respects the duplicated key appears first, `Dataset.collect` only keeps the duplicated key appears last, `MapKeys` returns duplicated keys, etc. Since Spark 3.0, these built-in functions will remove duplicated map keys with last wins policy. Users may still read map values with duplicated keys from data sources which do not enforce it (e.g. Parquet), the behavior will be undefined.
3131

3232
- In Spark version 2.4 and earlier, partition column value is converted as null if it can't be casted to corresponding user provided schema. Since 3.0, partition column value is validated with user provided schema. An exception is thrown if the validation fails. You can disable such validation by setting `spark.sql.sources.validatePartitionColumns` to `false`.
3333

3434
- In Spark version 2.4 and earlier, the `SET` command works without any warnings even if the specified key is for `SparkConf` entries and it has no effect because the command does not update `SparkConf`, but the behavior might confuse users. Since 3.0, the command fails if a `SparkConf` key is used. You can disable such a check by setting `spark.sql.legacy.setCommandRejectsSparkCoreConfs` to `false`.
3535

36-
- Since Spark 3.0, CSV/JSON datasources use java.time API for parsing and generating CSV/JSON content. In Spark version 2.4 and earlier, java.text.SimpleDateFormat is used for the same purpuse with fallbacks to the parsing mechanisms of Spark 2.0 and 1.x. For example, `2018-12-08 10:39:21.123` with the pattern `yyyy-MM-dd'T'HH:mm:ss.SSS` cannot be parsed since Spark 3.0 because the timestamp does not match to the pattern but it can be parsed by earlier Spark versions due to a fallback to `Timestamp.valueOf`. To parse the same timestamp since Spark 3.0, the pattern should be `yyyy-MM-dd HH:mm:ss.SSS`. To switch back to the implementation used in Spark 2.4 and earlier, set `spark.sql.legacy.timeParser.enabled` to `true`.
36+
- Since Spark 3.0, CSV/JSON datasources use java.time API for parsing and generating CSV/JSON content. In Spark version 2.4 and earlier, java.text.SimpleDateFormat is used for the same purpose with fallbacks to the parsing mechanisms of Spark 2.0 and 1.x. For example, `2018-12-08 10:39:21.123` with the pattern `yyyy-MM-dd'T'HH:mm:ss.SSS` cannot be parsed since Spark 3.0 because the timestamp does not match to the pattern but it can be parsed by earlier Spark versions due to a fallback to `Timestamp.valueOf`. To parse the same timestamp since Spark 3.0, the pattern should be `yyyy-MM-dd HH:mm:ss.SSS`. To switch back to the implementation used in Spark 2.4 and earlier, set `spark.sql.legacy.timeParser.enabled` to `true`.
3737

3838
- In Spark version 2.4 and earlier, CSV datasource converts a malformed CSV string to a row with all `null`s in the PERMISSIVE mode. Since Spark 3.0, the returned row can contain non-`null` fields if some of CSV column values were parsed and converted to desired types successfully.
3939

4040
- In Spark version 2.4 and earlier, JSON datasource and JSON functions like `from_json` convert a bad JSON record to a row with all `null`s in the PERMISSIVE mode when specified schema is `StructType`. Since Spark 3.0, the returned row can contain non-`null` fields if some of JSON column values were parsed and converted to desired types successfully.
4141

42-
- Since Spark 3.0, the `unix_timestamp`, `date_format`, `to_unix_timestamp`, `from_unixtime`, `to_date`, `to_timestamp` functions use java.time API for parsing and formatting dates/timestamps from/to strings by using ISO chronology (https://docs.oracle.com/javase/8/docs/api/java/time/chrono/IsoChronology.html) based on Proleptic Gregorian calendar. In Spark version 2.4 and earlier, java.text.SimpleDateFormat and java.util.GregorianCalendar (hybrid calendar that supports both the Julian and Gregorian calendar systems, see https://docs.oracle.com/javase/7/docs/api/java/util/GregorianCalendar.html) is used for the same purpuse. New implementation supports pattern formats as described here https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html and performs strict checking of its input. For example, the `2015-07-22 10:00:00` timestamp cannot be parse if pattern is `yyyy-MM-dd` because the parser does not consume whole input. Another example is the `31/01/2015 00:00` input cannot be parsed by the `dd/MM/yyyy hh:mm` pattern because `hh` supposes hours in the range `1-12`. To switch back to the implementation used in Spark 2.4 and earlier, set `spark.sql.legacy.timeParser.enabled` to `true`.
42+
- Since Spark 3.0, the `unix_timestamp`, `date_format`, `to_unix_timestamp`, `from_unixtime`, `to_date`, `to_timestamp` functions use java.time API for parsing and formatting dates/timestamps from/to strings by using ISO chronology (https://docs.oracle.com/javase/8/docs/api/java/time/chrono/IsoChronology.html) based on Proleptic Gregorian calendar. In Spark version 2.4 and earlier, java.text.SimpleDateFormat and java.util.GregorianCalendar (hybrid calendar that supports both the Julian and Gregorian calendar systems, see https://docs.oracle.com/javase/7/docs/api/java/util/GregorianCalendar.html) is used for the same purpose. New implementation supports pattern formats as described here https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html and performs strict checking of its input. For example, the `2015-07-22 10:00:00` timestamp cannot be parse if pattern is `yyyy-MM-dd` because the parser does not consume whole input. Another example is the `31/01/2015 00:00` input cannot be parsed by the `dd/MM/yyyy hh:mm` pattern because `hh` supposes hours in the range `1-12`. To switch back to the implementation used in Spark 2.4 and earlier, set `spark.sql.legacy.timeParser.enabled` to `true`.
4343

44-
- Since Spark 3.0, JSON datasource and JSON function `schema_of_json` infer TimestampType from string values if they matches to the pattern defined by the JSON option `timestampFormat`. Set JSON option `inferTimestamp` to `false` to disable such type inferring.
44+
- Since Spark 3.0, JSON datasource and JSON function `schema_of_json` infer TimestampType from string values if they match to the pattern defined by the JSON option `timestampFormat`. Set JSON option `inferTimestamp` to `false` to disable such type inferring.
4545

4646
## Upgrading From Spark SQL 2.3 to 2.4
4747

0 commit comments

Comments
 (0)