Skip to content

Latest commit

 

History

History
56 lines (39 loc) · 1.36 KB

README.md

File metadata and controls

56 lines (39 loc) · 1.36 KB

ReMasker

This is the implementation for the ICLR'24 paper: ReMasker: Imputing Tabular Data with Masked Autoencoding

Installation

  1. Require environment of python>=3.9

  2. pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116

  3. pip install timm

  4. pip install hyperimpute

Configuration

Modify the corresponding configuration in the config file or command-line arguments.

Example:

Path of datasets: --path (./)

Basic Command

You can run this basic command to get the imputation results of ReMasker on iris dataset:

python plugin_mae.py --dataset iris

Toy Example Usage

import numpy as np
import pandas as pd
from utils import get_args_parser
from remasker_impute import ReMasker

X_raw = np.arange(50).reshape(10, 5) * 1.0
X = pd.DataFrame(X_raw, columns=['0', '1', '2', '3', '4'])
X.iat[3,0] = np.nan

imputer = ReMasker()

imputed = imputer.fit_transform(X)
print(imputed[3,0])

Citation

If you use the code, please cite our paper:

@inproceedings{
    du2024remasker,
    title={ReMasker: Imputing Tabular Data with Masked Autoencoding},
    author={Tianyu Du and Luca Melis and Ting Wang},
    booktitle={The Twelfth International Conference on Learning Representations},
    year={2024},
    url={https://openreview.net/forum?id=KI9NqjLVDT}
}