|
| 1 | + |
| 2 | +import torch |
| 3 | +import torch.nn as nn |
| 4 | +import torch.optim as optim |
| 5 | +import torch.nn.functional as F |
| 6 | +from torch.autograd import Variable |
| 7 | + |
| 8 | + |
| 9 | +class RBM(nn.Module): |
| 10 | + |
| 11 | + def __init__(self, vis_dim, hid_dim, k, learning_rate=0.1, use_cuda=True): |
| 12 | + |
| 13 | + super(RBM, self).__init__() |
| 14 | + |
| 15 | + self.W = nn.Parameter(torch.randn(vis_dim, hid_dim) * 0.01) |
| 16 | + self.v_bias = nn.Parameter(torch.zeros(vis_dim)) |
| 17 | + self.h_bias = nn.Parameter(torch.zeros(hid_dim)) |
| 18 | + |
| 19 | + self.k = k |
| 20 | + self.learning_rate = learning_rate |
| 21 | + self.use_cuda = use_cuda |
| 22 | + |
| 23 | + self.optimizer = optim.SGD(self.parameters(), lr=learning_rate) |
| 24 | + |
| 25 | + if torch.cuda.is_available() and self.use_cuda: |
| 26 | + self.cuda() |
| 27 | + |
| 28 | + def sample_h_given_v(self, v_s): |
| 29 | + h_p = F.sigmoid(F.linear(v_s, self.W.t(), self.h_bias)) |
| 30 | + h_s = torch.bernoulli(h_p) |
| 31 | + return [h_p, h_s] |
| 32 | + |
| 33 | + def sample_v_given_h(self, h_s): |
| 34 | + v_p = F.sigmoid(F.linear(h_s, self.W, self.v_bias)) |
| 35 | + v_s = torch.bernoulli(v_p) |
| 36 | + return [v_p, v_s] |
| 37 | + |
| 38 | + def gibbs_hvh(self, h_s): |
| 39 | + v_p, v_s = self.sample_v_given_h(h_s) |
| 40 | + h_p, h_s = self.sample_h_given_v(v_s) |
| 41 | + return [v_p, v_s, h_p, h_s] |
| 42 | + |
| 43 | + def gibbs_vhv(self, v_s): |
| 44 | + h_p, h_s = self.sample_h_given_v(v_s) |
| 45 | + v_p, v_s = self.sample_v_given_h(h_s) |
| 46 | + return [h_p, h_s, v_p, v_s] |
| 47 | + |
| 48 | + def free_energy(self, v): |
| 49 | + v_bias_term = torch.mv(v, self.v_bias) |
| 50 | + wx_b = F.linear(v, self.W.t(), self.h_bias) |
| 51 | + hidden_term = torch.sum(torch.log(1 + torch.exp(wx_b)), dim=1) |
| 52 | + return -v_bias_term - hidden_term |
| 53 | + |
| 54 | + def fit(self, x): |
| 55 | + |
| 56 | + if torch.cuda.is_available() and self.use_cuda: |
| 57 | + x = x.cuda() |
| 58 | + v_s = Variable(x) |
| 59 | + |
| 60 | + # calculate positive part :: 'p' stands for positive |
| 61 | + ph_p, ph_s = self.sample_h_given_v(v_s) |
| 62 | + |
| 63 | + # calculate negative part :: 'n' stands for negative |
| 64 | + nv_p, nv_s, nh_p, nh_s = None, None, None, ph_s |
| 65 | + for _ in range(self.k): |
| 66 | + nv_p, nv_s, nh_p, nh_s = self.gibbs_hvh(nh_s) |
| 67 | + |
| 68 | + # calculate loss |
| 69 | + nv_s = nv_s.detach() |
| 70 | + cost = torch.mean(self.free_energy(v_s)) - torch.mean(self.free_energy(nv_s)) |
| 71 | + |
| 72 | + # calculate gradient & update parameters |
| 73 | + self.optimizer.zero_grad() |
| 74 | + cost.backward() |
| 75 | + self.optimizer.step() |
| 76 | + |
| 77 | + # calculate cross entropy |
| 78 | + loss = self.cal_cross_entropy(v_s, nv_p) |
| 79 | + |
| 80 | + return cost.data[0], loss |
| 81 | + |
| 82 | + @staticmethod |
| 83 | + def cal_cross_entropy(p, p_): |
| 84 | + return torch.mean(torch.sum(p * torch.log(p_) + (1 - p) * torch.log(1 - p_), dim=1)) |
| 85 | + |
| 86 | + def reconstruct(self, x): |
| 87 | + |
| 88 | + if torch.cuda.is_available(): |
| 89 | + x = x.cuda() |
| 90 | + v = Variable(x) |
| 91 | + |
| 92 | + h_p,_ = self.sample_h_given_v(v) |
| 93 | + |
| 94 | + return h_p |
| 95 | + |
| 96 | + def compress(self, x): |
| 97 | + |
| 98 | + if torch.cuda.is_available() and self.use_cuda: |
| 99 | + x = x.cuda() |
| 100 | + v_s = Variable(x) |
| 101 | + |
| 102 | + h_p, h_s = self.sample_h_given_v(v_s) |
| 103 | + v_p, v_s = self.sample_v_given_h(h_s) |
| 104 | + |
| 105 | + return v_s |
| 106 | + |
0 commit comments