forked from intel/intel-extension-for-transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_autodistillation.py
145 lines (134 loc) · 5.9 KB
/
test_tf_autodistillation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import shutil
import numpy as np
import unittest
import tensorflow as tf
from datasets import load_dataset, load_metric
from transformers import (TFAutoModelForSequenceClassification, AutoTokenizer,
DefaultDataCollator, HfArgumentParser,
TFTrainingArguments, set_seed)
from intel_extension_for_transformers.transformers import (
AutoDistillationConfig,
TFDistillationConfig,
metrics,
)
from intel_extension_for_transformers.transformers.optimizer_tf import TFOptimization
from intel_extension_for_transformers.transformers.utils.utility_tf import distributed_init
def compute_metrics(preds, label_ids):
metric = load_metric("glue", "sst2")
preds = preds["logits"]
preds = np.argmax(preds, axis=1)
result = metric.compute(predictions=preds, references=label_ids)
if len(result) > 1:
result["combined_score"] = np.mean(list(result.values())).item()
return result
class TestAutoDistillation(unittest.TestCase):
@classmethod
def setUpClass(self):
self.strategy = tf.distribute.MultiWorkerMirroredStrategy()
set_seed(42)
self.model = TFAutoModelForSequenceClassification.from_pretrained(
'distilbert-base-uncased')
self.teacher_model = TFAutoModelForSequenceClassification.from_pretrained(
'distilbert-base-uncased-finetuned-sst-2-english')
raw_datasets = load_dataset("glue", "sst2")["validation"]
self.tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
non_label_column_names = [
name for name in raw_datasets.column_names if name != "label"
]
def preprocess_function(examples):
# Tokenize the texts
args = ((examples['sentence'], ))
result = self.tokenizer(*args,
padding=True,
max_length=64,
truncation=True)
return result
raw_datasets = raw_datasets.map(preprocess_function,
batched=True,
load_from_cache_file=False)
data_collator = DefaultDataCollator(return_tensors="tf")
dataset = raw_datasets.select(range(10))
self.dummy_dataset = dataset.to_tf_dataset(
columns=[
col for col in dataset.column_names
if col not in set(non_label_column_names + ["label"])
],
shuffle=False,
batch_size=2,
collate_fn=data_collator,
drop_remainder=False,
# `label_cols` is needed for user-defined losses, such as in this example
# datasets v2.3.x need "labels", not "label"
label_cols=["labels"]
if "label" in dataset.column_names else None,
)
parser = HfArgumentParser(TFTrainingArguments)
self.args = parser.parse_args_into_dataclasses(args=[
"--output_dir", "./distilled_model",
"--per_device_eval_batch_size", "2"
])[0]
optimizer = tf.keras.optimizers.Adam(
learning_rate=self.args.learning_rate,
beta_1=self.args.adam_beta1,
beta_2=self.args.adam_beta2,
epsilon=self.args.adam_epsilon,
clipnorm=self.args.max_grad_norm,
)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.SUM)
metrics = ["accuracy"]
self.model.compile(optimizer=optimizer, loss=loss_fn, metrics=metrics)
self.optimizer = TFOptimization(model=self.model,
args=self.args,
train_dataset=self.dummy_dataset,
eval_dataset=self.dummy_dataset,
compute_metrics=compute_metrics)
@classmethod
def tearDownClass(self):
shutil.rmtree('./tmp', ignore_errors=True)
shutil.rmtree('./distilled_model', ignore_errors=True)
def test_tf_auto_distillation(self):
for search_algorithm in ['BO', 'Grid', 'Random']:
max_trials = 6 if search_algorithm == 'Random' else 3
autodistillation_config = AutoDistillationConfig(
search_space={
'hidden_size': [120, 240],
'intermediate_size': [256, 512]
},
search_algorithm=search_algorithm,
max_trials=max_trials,
metrics=[
metrics.Metric(name="metric", greater_is_better=False)
],
knowledge_transfer=TFDistillationConfig(
train_steps=[3],
loss_types=['CE', 'CE'],
loss_weights=[0.5, 0.5],
temperature=1.0
),
regular_distillation=TFDistillationConfig(
train_steps=[3],
loss_types=['CE', 'CE'],
loss_weights=[0.5, 0.5],
temperature=1.0
)
)
best_model_archs1 = self.optimizer.autodistill(
autodistillation_config,
self.teacher_model,
model_cls=TFAutoModelForSequenceClassification,
train_func=None,
eval_func=None
)
best_model_archs2 = self.optimizer.autodistill(
autodistillation_config,
self.teacher_model,
model_cls=TFAutoModelForSequenceClassification,
train_func=self.optimizer.build_train_func,
eval_func=self.optimizer.builtin_eval_func
)
# check best model architectures
self.assertTrue(len(best_model_archs1) > 0)
self.assertTrue(len(best_model_archs2) > 0)
if __name__ == "__main__":
unittest.main()