forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
floyd_warshall.py
102 lines (78 loc) · 2.82 KB
/
floyd_warshall.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# floyd_warshall.py
"""
The problem is to find the shortest distance between all pairs of vertices in a weighted directed graph that can
have negative edge weights.
"""
from __future__ import print_function
def _print_dist(dist, v):
print("\nThe shortest path matrix using Floyd Warshall algorithm\n")
for i in range(v):
for j in range(v):
if dist[i][j] != float('inf') :
print(int(dist[i][j]),end = "\t")
else:
print("INF",end="\t")
print()
def floyd_warshall(graph, v):
"""
:param graph: 2D array calculated from weight[edge[i, j]]
:type graph: List[List[float]]
:param v: number of vertices
:type v: int
:return: shortest distance between all vertex pairs
distance[u][v] will contain the shortest distance from vertex u to v.
1. For all edges from v to n, distance[i][j] = weight(edge(i, j)).
3. The algorithm then performs distance[i][j] = min(distance[i][j], distance[i][k] + distance[k][j]) for each
possible pair i, j of vertices.
4. The above is repeated for each vertex k in the graph.
5. Whenever distance[i][j] is given a new minimum value, next vertex[i][j] is updated to the next vertex[i][k].
"""
dist=[[float('inf') for _ in range(v)] for _ in range(v)]
for i in range(v):
for j in range(v):
dist[i][j] = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(v):
# looping through rows of graph array
for i in range(v):
# looping through columns of graph array
for j in range(v):
if dist[i][k]!=float('inf') and dist[k][j]!=float('inf') and dist[i][k]+dist[k][j] < dist[i][j]:
dist[i][j] = dist[i][k] + dist[k][j]
_print_dist(dist, v)
return dist, v
if __name__== '__main__':
v = int(input("Enter number of vertices: "))
e = int(input("Enter number of edges: "))
graph = [[float('inf') for i in range(v)] for j in range(v)]
for i in range(v):
graph[i][i] = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print("\nEdge ",i+1)
src = int(input("Enter source:"))
dst = int(input("Enter destination:"))
weight = float(input("Enter weight:"))
graph[src][dst] = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0