-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathMaximum Subarray Difference.py
97 lines (73 loc) · 2.51 KB
/
Maximum Subarray Difference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
"""
Given an array with integers.
Find two non-overlapping subarrays A and B, which |SUM(A) - SUM(B)| is the largest.
Return the largest difference.
Note
The subarray should contain at least one number
Example
For [1, 2, -3, 1], return 6
Challenge
O(n) time and O(n) space.
"""
__author__ = 'Danyang'
class Solution:
def maxDiffSubArrays(self, nums):
"""
Algorithm: dp
Maximum Subarray Difference
<= largest difference, max sum - min sum
<= max subarray sum and min subarray sum
<= because non-overlapping max/min subarray sum on one side, the other on the other side
<= split the array into half
:param nums: A list of integers
:return: An integer indicate the value of maximum difference between two Subarrays
"""
n = len(nums)
min_left = list(nums)
max_left = list(nums)
min_right = list(nums)
max_right = list(nums)
# min subarray
current = 0
for i in xrange(n):
current += nums[i]
if i-1 >= 0:
min_left[i] = min(current, min_left[i-1], min_left[i])
else:
min_left[i] = min(current, min_left[i])
if current > 0:
current = 0
# max subarray
current = 0
for i in xrange(n):
current += nums[i]
if i-1 >= 0:
max_left[i] = max(current, max_left[i-1], max_left[i])
else:
max_left[i] = max(current, max_left[i])
if current < 0:
current = 0
current = 0
for i in xrange(n-1, -1, -1):
current += nums[i]
if i+1 <= n-1:
max_right[i] = max(current, max_right[i+1], max_right[i])
else:
max_right[i] = max(current, max_right[i])
if current < 0:
current = 0
current = 0
for i in xrange(n-1, -1, -1):
current += nums[i]
if i+1 <= n-1:
min_right[i] = min(current, min_right[i+1], min_right[i])
else:
min_right[i] = min(current, min_right[i])
if current > 0:
current = 0
maxa = 0
for i in xrange(n-1):
maxa = max(maxa, abs(max_left[i]-min_right[i+1]), abs(min_left[i]-max_right[i+1]))
return maxa
if __name__ == "__main__":
print Solution().maxDiffSubArrays([-4, 5, -4, 5, -4, 5, -4, 5, -4, 5, -4, 5, -4, 5, -4, 5, -4, 5, -1000])