-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathMaximum Subarray II.py
63 lines (43 loc) · 1.42 KB
/
Maximum Subarray II.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"""
Given an array of integers, find two non-overlapping subarrays which have the largest sum.
The number in each subarray should be contiguous.
Return the largest sum.
Note
The subarray should contain at least one number
Example
For given [1, 3, -1, 2, -1, 2], the two subarrays are [1, 3] and [2, -1, 2] or [1, 3, -1, 2] and [2], they both have
the largest sum 7.
Challenge
Can you do it in time complexity O(n) ?
"""
__author__ = 'Danyang'
class Solution:
def maxTwoSubArrays(self, nums):
"""
dp max subarray
fi for subarry that ends WITH OR BEFORE i
f1 for forward sweeping
f2 for backward sweeping
:param nums: A list of integers
:return: An integer denotes the sum of max two non-overlapping subarrays
"""
n = len(nums)
f = [[-1<<31 for _ in xrange(n+1)] for _ in xrange(2)]
cur = 0
for i in xrange(1, n+1):
cur += nums[i-1]
f[0][i] = max(nums[i-1], f[0][i-1], cur)
if cur < 0:
cur = 0
cur = 0
for i in xrange(n-1, -1, -1):
cur += nums[i]
f[1][i] = max(nums[i], f[1][i+1], cur)
if cur < 0:
cur = 0
maxa = -1<<31
for i in xrange(1, n):
maxa = max(maxa, f[0][i]+f[1][i])
return maxa
if __name__ == "__main__":
print Solution().maxTwoSubArrays([1, 3, -1, 2, -1, 2])