-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
69 lines (56 loc) · 1.83 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from transformers import AutoTokenizer, AutoModelWithLMHead
import random
import os
import json
import yaml
models = []
with open("models.yml", "r") as stream:
out = yaml.load(stream)
model_list = out['Models']
for model in model_list:
models.append(model)
def load_model(model_dir=None):
"""Loads the saved model from disk if the directory exists.
Otherwise it will download the model and tokenizer from hugging face.
Returns
a tuple consisting of `(model,tokenizer)`
"""
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelWithLMHead.from_pretrained(model_dir)
return model, tokenizer
def generate(model, tokenizer, input_text=None, num_samples=1, max_length=1000, top_k=50, top_p=0.95):
model.eval()
if input_text:
input_ids = tokenizer.encode(input_text, return_tensors='pt')
output = model.generate(
input_ids= input_ids,
do_sample=True,
top_k=50,
max_length = max_length,
top_p=0.95,
num_return_sequences= num_samples
)
else:
output = model.generate(
bos_token_id=random.randint(1,50000),
do_sample=True,
top_k=50,
max_length = max_length,
top_p=0.95,
num_return_sequences=num_samples
)
decoded_output = []
for sample in output:
decoded_output.append(tokenizer.decode(
sample, skip_special_tokens=True))
return decoded_output
def wrap_text(text, length=80):
split_text = text.split('\n')
for line in split_text:
if len(line) > length:
import textwrap
text_lines = textwrap.wrap(text, width=length)
text = '\n'.join(text_lines)
break
return text
return text