-
Notifications
You must be signed in to change notification settings - Fork 9
/
Signal.fs
613 lines (564 loc) · 24.9 KB
/
Signal.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
//
// FSound - F# Sound Processing Library
// Copyright (c) 2022 by Albert Pang <albert.pang@me.com>
// All rights reserved.
//
// This file is a part of FSound
//
// FSound is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// FSound is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
namespace FSound
module Signal =
let private random = System.Random()
///
/// <summary>Generates a sequence of samples given a sampling frequency, the
/// duration (in seconds) required and a waveform function which returns the
/// value (float) at a given time t (float)</summary>
/// <param name="sf">Sampling frequency</param>
/// <param name="tau">Duration in seconds</param>
/// <param name="waveFunc">Waveform function</param>
/// <returns>Sequence of floats representing the sequence of samples generated
/// </returns>
///
let generate sf tau waveFunc =
seq {
for t in 0.0..(1.0 / sf)..tau -> waveFunc t
}
///
/// <summary>Sinusoid waveform function</summary>
/// <param name="a">amplitude</param>
/// <param name="f">frequency</param>
/// <param name="ph">phase</param>
/// <param name="t">time in seconds</param>
/// <returns>the value of the waveform at time t</returns>
///
let sinusoid a f ph t =
let w = 2.0 * System.Math.PI * f
a * cos (w * t + ph)
///
/// <summary>White noise waveform function</summary>
/// <param name="a">amplitude</param>
/// <param name="t">time in seconds</param>
/// <returns>the value of the waveform at time t</returns>
///
let whiteNoise a (t : float) =
// The random number generator needs to be outside of the scope of this
// function in order for calling it in a seq expression to actually
// generate a different number every time. If the random number generator
// is defined within the scope of this function, then calling it in a
// sequence expression will actually generate a sequence of the same number
// Looks like there is a binding somewhere which I am not able to understand
2.0 * a * (random.NextDouble() - 0.5) + t * 0.0
///
/// <summary>Returns a function which generates an on-off signal</summary>
/// <param name="on">The on value</param>
/// <param name="off">The off value </param>
/// <param name="onTime">The duration in seconds when the output value is set
/// the on value</param>
/// <param name="offTime">The duration in seconds when the output value is set
/// to the off value</param>
/// <returns>A signal function that takes time as a parameter</returns>
///
let onoff (on : float) (off : float) (onTime : float) (offTime : float) =
let totalTime = onTime + offTime
fun t ->
if t % totalTime <= onTime then on
else off
///
/// <summary>Square waveform function (Non-band-limited)</summary>
/// <param name="a">amplitude</param>
/// <param name="f">frequency</param>
/// <param name="t">time in seconds</param>
/// <returns>the value of the waveform at time t</returns>
///
let square (a : float) (f : float) (t : float) =
let square' = onoff a (-a) (0.5 / f) (0.5 / f)
square' t
///
/// <summary>Saw-tooth waveform function from -a to a (Non-band-limited)</summary>
/// <param name="a">amplitude</param>
/// <param name="f">frequency</param>
/// <param name="t">time in seconds</param>
/// <returns>the value of the waveform at time t</returns>
///
let saw (a : float) (f : float) (t : float) =
let tau = t % (1.0 / f)
-a + 2.0 * a * f * tau
/// <summary>
/// A ramp which is basically just a sawtooth from 0 to a
/// </summary>
/// <param name="a">amplitude</param>
/// <param name="f">frequency</param>
/// <param name="t">time in seconds</param>
/// <returns>the value of the waveform at time t</returns>
let ramp a f t = (a + saw a f t) * 0.5
/// <summary>
/// A rampdown function from amplitude to 0
/// </summary>
/// <param name="a">Amplitude</param>
/// <param name="f">Frequency</param>
/// <param name="t">time in seconds</param>
/// <returns>the value of the waveform at time t</returns>
let rampdown a f t = a - ramp a f t
///
/// <summary>Triangular waveform function</summary>
/// <param name="a">amplitude</param>
/// <param name="f">frequency</param>
/// <param name="t">time in seconds</param>
/// <returns>the value of the waveform at time t</returns>
///
let triangle (a : float) (f : float) (t : float) =
let cycle = int (4.0 * f * t)
let tau = t - float (cycle) / 4.0 / f
let abs_m = 4.0 * a * f
let (intercept, slope) =
match cycle % 4 with
| 0 -> (0.0, abs_m)
| 1 -> (a, -abs_m)
| 2 -> (0.0, -abs_m)
| _ -> (-a, abs_m)
intercept + tau * slope
/// <summary>
/// Modulate the waveform signal by the modulator with a binary operator
/// </summary>
/// <param name="op">Binary operator, with the value of the signal function at
/// time t as first input and the value of the modulator at time t as second
/// input</param>
/// <param name="waveform">The waveform function</param>
/// <param name="modulator">The modulator function</param>
/// <returns>A function which takes time t as an input and returns a sample
/// </returns>
let modulateWith op (waveform : 'a -> 'b) (modulator : 'a -> 'b) =
fun t -> op (waveform t) (modulator t)
///
/// <summary>Modulator function which multiplies two signals at time t
/// </summary>
/// <param name="waveform">primary waveform function</param>
/// <param name="modulator">modulator waveform function</param>
/// <returns>A function which takes time t as an input and returns a sample
/// which is the value of the waveform function at time t multiplied by the
/// value of the modulator function at time t
/// </returns>
///
let modulate (waveform : float -> float) (modulator : float -> float) =
modulateWith (*) waveform modulator
/// <summary>
/// Modulate the waveform function with a modulatable filter function which
/// takes t as the first input and a sample to operate on as the second input
/// </summary>
/// <param name="waveform">The waveform function</param>
/// <param name="modFilter">The time-varying filter function which takes time
/// t as the first input and the sample value to be operated on as the second
/// </param>
/// <returns>A function which takes time t as an input and returns a sample
/// </returns>
let modFilter (waveform : float -> float)
(modFilter : float -> float -> float) = fun t -> waveform t |> modFilter t
///
/// <summary>
/// Same as modulate but with order of waveform and modulator reversed for
/// easier piping
/// </summary>
/// <param name="modulator">modulator waveform function</param>
/// <param name="waveform">primary waveform function</param>
/// <param name="t">time in seconds</param>
/// <returns>the value of multipliying the value of the primary waveform at
/// time t and the value of the modulator waveform at time t</returns>
///
let modulateBy modulator waveform t = modulate waveform modulator t
///
/// <summary>Sums a sequence of waveform functions at time t</summary>
/// <param name="waveforms">Sequence of waveform functions</param>
/// <param name="t">time in seconds</param>
/// <returns>the value of summing the value of all the waveform functions in
/// the list at time t</returns>
///
let sum waveforms (t : float) =
Seq.fold (fun acc wf -> acc + wf t) 0.0 waveforms
/// <summary>
/// Sums a sequence of 'stereo' waveform functions at time t. Each of the
/// waveform functions is assumed to return a pair of samples
/// </summary>
/// <param name="waveforms">Sequence of waveform functions</param>
/// <param name="t">time in seconds</param>
let sum2 waveforms (t : float) =
let add (x0, y0) (x1, y1) = (x0 + x1, y0 + y1)
Seq.fold (fun acc wf -> wf t |> add acc) (0.0, 0.0) waveforms
///
/// <summary>Low frequency oscillator</summary>
/// <param name="f">Frequency(Hz)</param>
/// <param name="depth">Depth - from 0.0 to 1.0. When it is set to 0, the
/// LFO always output 1.0 and therefore it has no effect. When it is set to 1
/// it will have full effect. A value in between 0.0 and 1.0 means it will
/// have some positive value at its lowest and won't cause the modulated
/// signal to go to zero</param>
/// <param name="t">time in seconds</param>
/// <returns>value of the lfo at time t</returns>
let lfo f phase depth t =
// short circuit for depth = 0.0
if depth = 0.0 then 1.0
else ((sinusoid 1.0 f phase t) + 1.0) * 0.5 * depth + (1.0 - depth)
///
/// <summary>ADSR envelope</summary>
/// <param name="attTime">Duration of attack (sec)</param>
/// <param name="attLevel">Attach level</param>
/// <param name="decayTime">Duration of decay period (sec)</param>
/// <param name="susLevel">Suspension level as a percentage of attack level
/// </param>
/// <param name="susTime">Duration of suspension (sec)</param>
/// <param name="releaseTime">Duration of release (sec)</param>
/// <param name="t">time in seconds</param>
/// <returns>Value of the ADSR envelope at time t</returns>
///
let adsr attTime attLevel decayTime susLevel susTime releaseTime =
let attStart = 0.0
let decayStart = attTime
let susStart = decayStart + decayTime
let releaseStart = susStart + susTime
let releaseEnd = releaseStart + releaseTime
fun t ->
let (intercept, slope, start_point) =
match t with
| t when t >= attStart && t < decayStart ->
(0.0, attLevel / attTime, attStart)
| t when t >= decayStart && t < susStart ->
(attLevel, (susLevel - 1.0) * attLevel / decayTime, decayStart)
| t when t >= susStart && t < releaseStart -> (susLevel, 0.0, susStart)
| t when t >= releaseStart && t < releaseEnd ->
(susLevel, -susLevel / releaseTime, releaseStart)
| _ -> (0.0, 0.0, releaseEnd)
(t - start_point) * slope + intercept
let adsrX attTime attLevel decayTime susLevel susTime releaseTime dur =
let totalTime = attTime + decayTime + susTime + releaseTime
let (attTime', decayTime', susTime', releaseTime') =
(dur * attTime / totalTime, dur * decayTime / totalTime,
dur * susTime / totalTime, dur * releaseTime / totalTime)
adsr attTime' attLevel decayTime' susLevel susTime' releaseTime'
/// <summary>
/// Exponential attack and decay envelope
/// </summary>
/// <param name="attackTime">Attack time in seconds</param>
/// <param name="attackRate">Attack rate, the larger it is, the steeper
/// the curve</param>
/// <param name="decayTime">Decay time in seconds</param>
/// <param name="decayRate">Decay rate, the larger it is, the steeper
/// the curve</param>
/// <returns>Exponential attack/decay envelope function</returns>
let ad attackTime attackRate decayTime decayRate =
fun t ->
if t < attackTime then (t / attackTime) ** (1.0 / attackRate)
else if t < attackTime + decayTime then
1.0 - ((t - attackTime) / decayTime) ** (1.0 / decayRate)
else 0.0
///
/// <summary>Hard-clips a sample</summary>
/// <param name="bottom">the minimum level</param>
/// <param name="top">the maximum level</param>
/// <returns>the value of the sample after clipping
///
let clipper2 bottom top = max bottom >> min top
///
/// <summary>Hard-clips a sample symmetrically by +/- level</summary>
/// <param name="level">the level at which the sample will be clipped both
/// up and down</param>
/// <returns>the value of the sample after clipping
///
let clipper (level : float) =
let l = abs level
clipper2 -l l
/// <summary>Convenience function which combines sinusoid waveform with
/// the generate function</summary>
/// <param name="a">amplitude</param>
/// <param name="f">frequency of the sinusoid</param>
/// <param name="ph">phase of the sinusoid</param>
/// <param name="sf">sampling frequency</param>
/// <param name="tau">duration of the samples to be generated</param>
/// <returns>Sequence of samples</returns>
///
let sinusoidGenerator a f ph sf tau = sinusoid a f ph |> generate sf tau
///
/// <summary>Convenience function which combines whitenoise waveform with
/// the generate function</summary>
/// <param name="a">amplitude</param>
/// <param name="sf">sampling frequency</param>
/// <param name="tau">duration of the samples to be generated</param>
/// <returns>Sequence of samples</returns>
///
let whiteNoiseGenerator a sf tau = whiteNoise a |> generate sf tau
///
/// <summary>Convenience function which combines square waveform with
/// the generate function</summary>
/// <param name="a">amplitude</param>
/// <param name="f">frequency of the square waveform</param>
/// <param name="sf">sampling frequency</param>
/// <param name="tau">duration of the samples to be generated</param>
/// <returns>Sequence of samples</returns>
///
let squareGenerator a f sf tau = square a f |> generate sf tau
///
/// <summary>Convenience function which combines saw-tooth waveform with
/// the generate function</summary>
/// <param name="a">amplitude</param>
/// <param name="f">frequency of the saw-tooth waveform</param>
/// <param name="sf">sampling frequency</param>
/// <param name="tau">duration of the samples to be generated</param>
/// <returns>Sequence of samples</returns>
///
let sawGenerator a f sf tau = saw a f |> generate sf tau
///
/// <summary>Convenience function which combines triangular waveform with
/// the generate function</summary>
/// <param name="a">amplitude</param>
/// <param name="f">frequency of the triangular waveform</param>
/// <param name="sf">sampling frequency</param>
/// <param name="tau">duration of the samples to be generated</param>
/// <returns>Sequence of samples</returns>
///
let triangleGenerator a f sf tau = triangle a f |> generate sf tau
///
/// <summary>A signal generator which arranges a sequence of other signal
/// generators to be played at a specific time. As this is actually a signal
/// generator itself, it returns a function which takes one parameter t and
/// returns the value of the sample at t by summing up the value generated
/// by all the generators at time t</summary>
/// <param name="generatorAtTimeList">List of pairs of (timeOffset, generator)
/// The timeOffset is in seconds and the generator is simply another signal
/// generator which takes a time parameter. The generator will generate a
/// value only at a time after timeOffset seconds. For all time t before
/// timeOffset, the value generated is 0.0, which means the particular
/// generator is silent</param>
/// <param name="t">Time in seconds<param>
/// <returns>The sum of the sample value of each arranged generators at time t
/// </returns>
///
let arrange generatorAtTimeList t =
let c (f : float -> float) =
fun s ->
if s < 0.0 then 0.0
else f s
Seq.fold (fun v (s, gen) -> v + (c gen) (t - s)) 0.0 generatorAtTimeList
/// <summary>
/// Generates a signal function which beeps a given waveform on and off
/// </summary>
/// <param name="waveform">The input waveform function</param>
/// <param name="onTime">The duration of on in seconds</param>
/// <param name="offTime">The duration of off in seconds</param>
/// <returns>A signal function</returns>
let beep waveform onTime offTime =
waveform |> modulateBy (onoff 1.0 0.0 onTime offTime)
/// <summary>
/// Linear fading function
/// </summary>
/// <param name="duration">Number of seconds for envelope to drop to 0
/// </param>
/// <returns>A function for fading an input signal to be used with modulate
/// </returns>
let fadeLinear duration =
fun t ->
if t > duration then 0.0
else 1.0 - t * (1.0 / duration)
/// <summary>
/// Exponential fading function
/// </summary>
/// <param name="duration">Number of seconds for envelope to drop to half
/// </param>
/// <returns>A function for fading an input signal to be used with modulate
/// </returns>
let fadeExp duration =
let r = -log 0.5 / duration
fun t -> exp (-r * t)
/// <summary>
/// Function to calculate the gains of the square root panning law
/// </summary>
/// <param name="position">Position towards the left, between 0.0 and 1.0
/// </param>
/// <returns>A pair representing the gains of the left and right channel
/// </returns>
let panSqrGain position = (sqrt position, sqrt (1.0 - position))
/// <summary>
/// Function to calculte the gains of the sin/cos panning law
/// </summary>
/// <param name="position">Position towards the left, between 0.0 and 1.0
/// </param>
/// <returns>A pair representing the gains of the left and right channel
/// </returns>
let panCosineGain position =
sin (position * System.Math.PI * 0.5),
sin ((1.0 - position) * System.Math.PI * 0.5)
/// <summary>
/// Function to calculate the scaled sample value using the specified panning
/// gain calculation function
/// </summary>
/// <param name="panFunc">Gain calculation function which takes in a parameter
/// value which is the position towards the left and returns a pair
/// representing the gains of the left and right channel</param>
/// <param name="position">Position towards the left, between 0.0 and 1.0
/// </param>
/// <returns>A function returning a pair representing the sample value of the
/// left and right channel calculated by multiplying the panning gains with
/// the given sample value</returns>
let pan panFunc position =
let (gainL, gainR) = panFunc position
fun s -> (s * gainL, s * gainR)
/// <summary>
/// Square root panning
/// </summary>
/// <param name="position">Position towards the left, between 0.0 and 1.0
/// </param>
/// <returns>A function returning a pair representing the sample value of the
/// left and right channel calculated by multiplying the panning gains with
/// the given sample value</returns>
let panSqr position = pan panSqrGain position
/// <summary>
/// Sine-cosine panning
/// </summary>
/// <param name="position">Position towards the left, between 0.0 and 1.0
/// </param>
/// <returns>A function returning a pair representing the sample value of the
/// left and right channel calculated by multiplying the panning gains with
/// the given sample value</returns>
let panCosine position = pan panCosineGain position
/// <summary>
/// Cross fade between two signals
/// </summary>
/// <param name="hold">Initial hold period in seconds before fading kicks in
/// </param>
/// <param name="fade">Number of seconds after which the first signal is
/// completely faded out and the second signal is completely faded in</param>
/// <param name="s1">Signal function 1</param>
/// <param name="s2">Signal function 2</param>
/// <returns>A signal function which is the cross fade from signal one to
/// signal 2</returns>
let crossfade hold fade s1 s2 =
fun t ->
let f =
if t < hold then 1.0
else fadeLinear fade (t - hold)
s1 t * f + s2 t * (1.0 - f)
/// <summary>
/// Ring modulator
/// </summary>
/// <param name="modulatorFreq">Frequency of modulator in Hz</param>
/// <param name="carrier">Carrier waveform</param>
/// <returns>A signal function for ring modulating the carrier signal by a
/// sinusoid</returns>
let ring modulationIndex modulatorFreq carrier =
carrier
|> modulateBy (sinusoid modulationIndex modulatorFreq 0.0 >> ((+) 1.0))
/// <summary>
/// Mod type represents the input parameter to a signal function
/// Const is a constant value. Ft means a function of t, i.e. other signals
/// </summary>
type Mod =
| Const of float
| Ft of (float -> float)
/// <summary>
/// Gets the value of the mod param. If it's a constant, simply return it
/// if it's an Ft, pass t to it and return the Ft(t)
/// </summary>
/// <param name="t">Value of time in seconds</param>
/// <returns>The value of mod param at time t</returns>
member x.GetValue t =
match x with
| Const v -> v
| Ft f -> f t
/// <summary>
/// Convenience function to get the value of a mod param at time t
/// </summary>
/// <param name="m">The mod param</param>
/// <param name="t">The value of time in seconds</param>
/// <returns>The value of mod param at time t</returns>
let getModValue (m : Mod) = m.GetValue
/// <summary>
/// A sinusoid signal function which takes in modulatable parameters
/// </summary>
/// <param name="modA">Modulatable amplitude e.g. an LFO</param>
/// <param name="modF">Modulatable frequency e.g. an LFO</param>
/// <param name="fc">Center frequency in Hz</param>
/// <param name="depth">This is theoretically the ratio between the frequency
/// deviation to the frequency of the modulator. If the modulator is an LFO
/// with 10Hz, and the frequency deviation is 30Hz around the center frequency
/// then depth is 30/10 = 3</param>
/// <returns>A signal function</returns>
let modSinusoid (modA : Mod) (modF : Mod) fc =
let pi = System.Math.PI
let w = 2.0 * pi * fc
fun t ->
let f = modF.GetValue t
let a = modA.GetValue t
a * cos (w * t + f)
/// <summary>
/// Frequency modulation using the modulatable sinusoid function by
/// passing in an LFO as the frequency modulator
/// </summary>
/// <param name="modA">Amplitude modulation if desired otherwise simply
/// pass in a Const for constant amplitude</param>
/// <param name="fc">Carrier frequency</param>
/// <param name="fm">Modulator frequency</param>
/// <param name="depth">This is theoretically the ratio between the frequency
/// deviation to the frequency of the modulator. If the modulator is an LFO
/// with 10Hz, and the frequency deviation is 30Hz around the center frequency
/// then depth is 30/10 = 3</param>
/// <returns>A signal function</returns>
let fm modA fc fm depth = modSinusoid modA (Ft(sinusoid depth fm 0.0)) fc
/// <summary>
/// Father of FM Synthesis - John Chowning
/// FM synthesis with an envelope on the depth to make spectrum vary with time
/// </summary>
/// <param name="a">Amplitude</param>
/// <param name="f">Frequency of carrier</param>
/// <param name="mcRatio">Ratio of modulator frequency to the carrier</param>
/// <param name="depth">Modulation depth</param>
/// <param name="envelope">Envelope to be applied to the depth</param>
let chowning a fc mcRatio depth depthEnv =
let fm = fc * mcRatio
modSinusoid (Const a) (Ft(sinusoid depth fm 0.0 |> modulateBy depthEnv)) fc
/// <summary>
/// Chowning brass
/// </summary>
/// <param name="a">Amplitude</param>
/// <param name="f">Frequency</param>
/// <param name="duration">Duration in seconds</param>
let brass a f duration =
chowning a f 1.0 5.0 (adsrX 0.2 1.0 0.2 0.6 0.5 0.1 duration)
/// <summary>
/// Chowning oboe
/// </summary>
/// <param name="a">Amplitude</param>
/// <param name="f">Frequency</param>
/// <param name="duration">Duration in seconds</param>
let oboe a f duration =
chowning a f (1.0 / 3.0) 2.0 (adsrX 0.06 0.5 0.04 1.0 0.8 0.1 duration)
/// <summary>
/// Chowning bassoon
/// </summary>
/// <param name="a">Amplitude</param>
/// <param name="f">Frequency</param>
/// <param name="duration">Duration in seconds</param>
let bassoon a f duration =
chowning a f 0.2 1.5 (adsrX 0.06 0.5 0.04 1.0 0.8 0.1 duration)
/// <summary>
/// Chowning clarinet
/// </summary>
/// <param name="a">Amplitude</param>
/// <param name="f">Frequency</param>
/// <param name="duration">Duration in seconds</param>
let clarinet a f duration =
chowning a f (2.0 / 3.0) 2.0 (adsrX 0.25 1.0 0.0 1.0 0.5 0.25 duration)
/// <summary>
/// Bells and gongs
/// </summary>
/// <param name="a">Amplitude</param>
/// <param name="f">Frequency</param>
let bell a f = chowning a f 1.4 10.0 (fadeExp 1.0) |> modulate (fadeExp 1.0)