Skip to content

Utterance-level Aggregation For Speaker Recognition In The Wild

Notifications You must be signed in to change notification settings

ajilim/VGG-Speaker-Recognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

README

This repo will contain the code for ICASSP 2019, speaker identifcation.

This repo contains a Keras implementation of the paper,
[Utterance-level Aggregation For Speaker Recognition In The Wild (Xie et al., ICASSP 2019)].

Dependencies

Data

The dataset used for the experiments are

Training the model

To train the model on the Voxceleb2 dataset, you can run

  • python src/main.py --net resnet34s --batch_size 160 --gpu 2,3 --lr 0.001 --optimizer adam --epochs 48 --multiprocess 8 --loss softmax --data_path ../path_to_voxceleb2

Model

Testing the model

To test a specific model on the voxceleb1 dataset, for example, the model trained with ResNet34s trained by adam with softmax, and feature dimension 512

  • python src/predict.py --gpu 1 --net resnet34s --ghost_cluster 2 --vlad_cluster 8 --loss softmax --resume ../model/gvlad_softmax/resnet34_vlad8_ghost2_bdim512_deploy/weights.h5

Citation

@InProceedings{Xie19,
  author       = "W. Xie, A. Nagrani, J. S. Chung, A. Zisserman ",
  title        = "Utterance-level Aggregation For Speaker Recognition In The Wild.",
  booktitle    = "ICASSP, 2019",
  year         = "2019",
}

@InProceedings{Chung18,
  author       = "J. S. Chung*, A. Nagrani*, A. Zisserman ",
  title        = "VoxCeleb2: Deep Speaker Recognition.",
  booktitle    = "INTERSPEECH, 2018",
  year         = "2018",
}

@InProceedings{Nagrani17,
  author       = "A. Nagrani*, J. S. Chung*, A. Zisserman ",
  title        = "VoxCeleb: A Large-scale Speaker Identification Dataset.",
  booktitle    = "INTERSPEECH, 2017",
  year         = "2018",
}

About

Utterance-level Aggregation For Speaker Recognition In The Wild

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%