forked from The-FaZe/online-action-recognition
-
Notifications
You must be signed in to change notification settings - Fork 6
/
main.py
390 lines (323 loc) · 15.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import argparse #used for command line interfacing.
import torch
import os
import torchvision
import torch.nn.parallel #to use multiple GPUs.
import time
import shutil
import torch.optim
import torch.backends.cudnn as cudnn
from torch.nn.utils import clip_grad_norm_
from UCF_Dataset import TSNDataset
from Modified_CNN import TSN_model
from transforms import *
from parser_commands import parser
import subprocess
#specify best_acc1 as a variable to deteremine the best accuracy achieved during training.
best_acc1 = 0
def main():
global args, best_acc1
args = parser.parse_args()
if args.dataset == 'ucf101':
num_classes = 101
else:
raise ValueError('Unknown dataset: ' + args.dataset)
model = TSN_model(num_classes, args.num_segments, args.modality, base_model_name=args.arch,
consensus_type=args.consensus_type, dropout=args.dropout, partial_bn=not args.no_partialbn, KinWeights = args.KinWeights)
crop_size = model.crop_size
scale_size = model.scale_size
input_mean = model.input_mean
input_std = model.input_std
policies = model.get_optim_policies()
train_augmentation = model.get_augmentation()
#to use multiple GPUs, args.gpus is a list (e.g. to use 4 GPUs, device_ids=[0,1,2,3]).
model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()
#args.resume is an empty string to provide the path to the latest checkpoint.
if args.resume:
#if there is a file, do the following:
if os.path.isfile(args.resume):
print(("Loading checkpoint '{}'".format(args.resume)))
#load the parameters.
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
model.load_state_dict(checkpoint['state_dict'])
print(("Loaded checkpoint '{}' epoch {}".format(args.evaluate, checkpoint['epoch'])))
else:
print(("No checkpoint found at '{}'".format(args.resume)))
#this flag allows you to enable the inbuilt cudnn auto-tuner to find
#the best algorithm to use for your hardware.
#but if the input sizes change at each iteration, this will lead to worse runtime.
cudnn.benchmark = True
#different techniques of normalization is used for RGB & RGB Difference. ########
if args.modality != 'RGBDiff':
normalize = GroupNormalize(input_mean, input_std)
else:
normalize = IdentityTransform()
#for RGB, we only take 1 frame per segment.
#for RGBDiff, we take 5 consecutive frames per segment.
if args.modality == 'RGB':
data_length = 1
else:
data_length = 5
#load the data using built-in PyTorch function torch.utils.data.DataLoader. ##########
train_loader = torch.utils.data.DataLoader(
TSNDataset(args.train_list, num_segments=args.num_segments,
new_length=data_length, modality=args.modality,
image_prefix='frame{:06d}.jpg',
transform=torchvision.transforms.Compose([
train_augmentation,
Stack(roll=args.arch=='BNInception'), #########
#convert RGB image with (H x W x C) to tensor of shape (C x H x W).
#from range [0, 255] to [0 1]
ToTorchFormatTensor(div=args.arch!='BNInception'),
normalize,
])),
# how many subprocesses to use for data loading. 0 means that the data will be loaded
#in the main process.
# Having more workers will increase the memory usage.WARNING alot of workers
#with larg batch size will cosume all the ram.
#Optimal value of workers is the number of cpu cores as each core is responsable
#to deliver one of batches.
#4 or 8 would be ok. more will distract and consume the cpu.
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
TSNDataset(args.val_list, num_segments=args.num_segments,
new_length=data_length,
modality=args.modality,
image_prefix='frame{:06d}.jpg',
train_val_switch=False,
transform=torchvision.transforms.Compose([
GroupScale(int(scale_size)),
GroupCenterCrop(crop_size),
Stack(roll=args.arch == 'BNInception'),
ToTorchFormatTensor(div=args.arch != 'BNInception'),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
#only one loss type if defined (CrossEntropy).
if args.loss_type =='nll':
criterion=torch.nn.CrossEntropyLoss().cuda()
else:
raise ValueError("Unkown loss type")
print('---------------------------------------------------')
for group in policies:
print(('group: {} has {} params, lr_mult: {}, decay_mult: {}'.format(
group['name'], len(group['params']), group['lr_mult'], group['decay_mult'])))
print('---------------------------------------------------')
#Stochastic Gradient Decent.
optimizer = torch.optim.SGD(policies, args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
if args.evaluate:
validate(val_loader, model, criterion, 0)
#this is used for the same reason as break in loops.
return
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args.lr_steps)
#train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
#evaluate on validation set
if (epoch+1) % args.eval_freq == 0 or epoch == args.epochs - 1:
acc1 = validate(val_loader, model, criterion, (epoch+1) * len(train_loader))
# remember best acc@1 and save checkpoint.
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
}, is_best)
def train(train_loader, model, criterion, optimizer, epoch):
"""
train the model by doing forward and backward propagation
inputs:
train_loader: single- or multi-process iterators over the dataset.
model: TSN Model
criterion: The loss function we use - "CrossEntropyLoss"
optimizer: type of optimizer - "stochastic gradient descent"
epoch: num. of epocs
"""
# make instances for batch_time, data_time, losses, top1, top5 from AverageMeter class
# to calculate the average for each of them
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# check the state of partial batch normalization
if args.no_partialbn:
model.module.partialBN(False)
else:
model.module.partialBN(True)
# switch to train mode
model.train()
# start to calculate the training time in seconds
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
# Since our dataloader uses pinned memory, we can load asynchronously.
# Setting async to true avoids cuda synchronization.
# So it's mainly for the slight speed gain.
target = target.cuda() ##########
input = torch.autograd.Variable(input)
target = torch.autograd.Variable(target)
#subprocess.run(["nvidia-smi"])
# compute output
output = model(input)
#subprocess.run(["nvidia-smi"])
loss = criterion(output, target) # criterion is the crossEntropyLoss
# measure accuracy and record loss
acc1, acc5 = accuracy(output.data, target, topk=(1,5))
# update is a function in AverageMeter() class which compute the average #########
losses.update(loss.item(), input.size(0))
top1.update(acc1.item(), input.size(0))
top5.update(acc5.item(), input.size(0))
# compute gradient and do SGD step
# "zero_grad()" this function Clears the gradients of all optimized
# It’s important to call this before loss.backward(),
# otherwise you’ll accumulate the gradients from multiple passes.
optimizer.zero_grad()
loss.backward()
if args.clip_gradient is not None:
total_norm = clip_grad_norm_(model.parameters(), args.clip_gradient)
#if total_norm > args.clip_gradient:
#print("clipping gradient: {} with coef {}".format(total_norm, args.clip_gradient / total_norm))
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print(('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5, lr=optimizer.param_groups[-1]['lr'])))
def validate (val_loader,model,ceriterion,logger=None):
"""
This function for validation process
"""
#Bunch of accumulating-based meters to calculate averages for various values
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
#notify all your layers that you are in eval mode, that way, batchnorm or
#dropout layers will work in eval model instead of training mode.
model.eval()
#in validation process, we don't need to backpropagate.
with torch.no_grad():
#Batch processing start time
end = time.time()
#Loop through every single batch
#i is integer , Input is the input tensor ,Target is the truth table
for i, (Input,Target) in enumerate(val_loader):
Target = Target.cuda()
#Input = torch.autograd.Variable(Input,volatile = True)
#Target = torch.autograd.Variable(Target,volatile = True)
#Forward Propagation
output = model(Input)
#Calculating loss
loss = ceriterion(output,Target)
#Calculateing Accuracy
#acc1 checks if real class == the highest output class
#acc5 checks if real class is in the highest 5 outputs
acc1,acc5 = accuracy(output, Target, topk=(1,5))
#Update values and calculating averages
losses.update(loss.item(), Input.size(0))
top1.update(acc1.item(), Input.size(0))
top5.update(acc5.item(), Input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f} Loss {loss.avg:.5f}'.format(top1=top1, top5=top5, loss=losses))
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
"""
save checkpoints.
inputs:
state: dictionary - which contain info to be saved
is_best: boolean
filename: string - path to a file to save checkpoints parameters
"""
filename = '_'.join((args.snapshot_pref, args.modality.lower(), filename))
torch.save(state, filename)
if is_best:
best_name = '_'.join((args.snapshot_pref, args.modality.lower(), 'model_best.pth.tar'))
shutil.copyfile(filename, best_name)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
""" Reset all variables to 0 """
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
""" calculate the average of the val
inputs:
val: integer or float num.
n: integer
"""
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch, lr_steps):
"""Sets the learning rate to the initial LR decayed by 10 every number of epochs (Default=30)"""
decay = 0.1 ** (sum(epoch >= np.array(lr_steps)))
lr = args.lr * decay
decay = args.weight_decay
for param_group in optimizer.param_groups:
param_group['lr'] = lr * param_group['lr_mult']
param_group['weight_decay'] = decay * param_group['decay_mult']
# INPUTS: output have shape of [batch_size, category_count]
# and target in the shape of [batch_size] * there is only one true class for each sample
# topk is tuple of classes to be included in the precision
# topk have to a tuple so if you are giving one number, do not forget the comma
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
"""Computes the accuracy over the k top predictions for the specified values of k"""
#we do not need gradient calculation for those
#we will use biggest k, and calculate all precisions from 0 to k
maxk = max(topk)
batch_size = target.size(0)
#topk gives biggest maxk values on dimth dimension from output
#output was [batch_size, category_count], dim=1 so we will select biggest category scores for each batch
# input=maxk, so we will select maxk number of classes
#so result will be [batch_size,maxk]
#topk returns a tuple (values, indexes) of results
# we only need indexes(pred)
_, pred = output.topk(maxk, 1, True, True) # Returns the k largest elements of the given input tensor along a given dimension.
# then we transpose pred to be in shape of [maxk, batch_size]
pred = pred.t()
#we flatten target and then expand target to be like pred
# target [batch_size] becomes [1,batch_size]
# target [1,batch_size] expands to be [maxk, batch_size] by repeating same correct class answer maxk times.
# when you compare pred (indexes) with expanded target, you get 'correct' matrix in the shape of [maxk, batch_size] filled with 1 and 0 for correct and wrong class assignments
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
# then we look for each k summing 1s in the correct matrix for first k element.
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res # it should be a list with 2 elements
if __name__ == '__main__':
os.environ['TORCH_MODEL_ZOO'] = "/home/alex039u2/data/"
main()