点、直线、圆、凸多边形,具体注释见代码。
#include <bits/stdc++.h>
typedef double db;
const db eps = 1e-8;
const db inf = 1e20;
const db pi = acos(-1.0);
const int maxp = 1010;
// credit to [@暮冥](https://www.cnblogs.com/1625--H/p/12565000.html)
// Compares a double to zero
int sgn(db x) {
if (fabs(x) < eps)
return 0;
if (x < 0)
return -1;
return 1;
}
// square of a double
inline db sqr(db x) { return x * x; }
struct Point {
db x, y;
Point() {}
Point(db x, db y) : x(x), y(y) {}
void input() {
scanf("%lf%lf", &x, &y); //如果为longdouble则需要改为Lf
}
// 1.比较两点是否相同
bool operator==(Point b) const {
return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;
}
// 2.按照(x,y)的优先级比较,因题目不同要修改
bool operator<(Point b) const {
return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x;
}
// 3.常用,求向量
Point operator-(const Point &b) const { return Point(x - b.x, y - b.y); }
// 4. 叉积
db operator^(const Point &b) const { return x * b.y - y * b.x; }
// 5. 点积
db operator*(const Point &b) const { return x * b.x + y * b.y; }
// 6. 返回长度
db len() { return hypot(x, y); }
// 7. 返回长度平方
db len2() { return x * x + y * y; }
// 8. 返回两点距离
db distance(Point p) { return hypot(x - p.x, y - p.y); }
// 9. 向量加
Point operator+(const Point &b) const { return Point(x + b.x, y + b.y); }
// 10. 标量乘
Point operator*(const db &k) const { return Point(x * k, y * k); }
// 11. 标量除
Point operator/(const db &k) const { return Point(x / k, y / k); }
// 12.
// 计算 pa 和 pb 的夹角
// 就是求这个点看 a,b所成的夹角
// LightOJ 1203
db rad(Point a, Point b) {
Point p = *this;
return fabs(atan2(fabs((a - p) ^ (b - p)), (a - p) * (b - p)));
}
// 13. 化为长度为 r 的向量
Point trunc(db r) {
db l = len();
if (!sgn(l))
return *this;
r /= l;
return Point(x * r, y * r);
}
// 14. 逆时针旋转90度
Point rotleft() { return Point(-y, x); }
// 15. 顺时针转90度
Point rotright() { return Point(y, -x); }
// 16. 绕点 p 逆时针旋转 angle
Point rotate(Point p, db angle) {
Point v = (*this) - p;
db c = cos(angle), s = sin(angle);
return Point(p.x + v.x * c - v.y * s, p.y + v.x * s + v.y * c);
}
};
struct Line {
Point s, e;
Line() {}
Line(Point s, Point e) : s(s), e(e) {}
void input() {
s.input();
e.input();
}
// 17. 判断直线是否相等
bool operator==(Line v) { return (s == v.s) && (e == v.e); }
// 20. 调整直线两点顺序
void adjust() {
if (e < s)
swap(s, e);
}
// 21. 求直线长度
db length() { return s.distance(e); }
// 18. 根据一个点和倾斜角angle确定直线, 0 <= angle < pi
Line(Point p, db angle) {
s = p;
if (sgn(angle - pi / 2) == 0) {
e = (s + Point(0, 1));
} else {
e = (s + Point(1, tan(angle)));
}
}
// 19. ax + by + c = 0
Line(db a, db b, db c) {
if (sgn(a) == 0) { // y = -c / b
s = Point(0, -c / b);
e = Point(1, -c / b);
} else if (sgn(b) == 0) { // x = -c / a
s = Point(-c / a, 0);
e = Point(-c / a, 1);
} else { //(0, -c/b), (1, (-c-a)/b)
s = Point(0, -c / b);
e = Point(1, (-c - a) / b);
}
}
// 22. 返回直线倾斜角 0 <= angle < pi
db angle() {
db k = atan2(e.y - s.y, e.x - s.x);
if (sgn(k) < 0)
k += pi;
if (sgn(k - pi) == 0)
k -= pi;
return k;
}
/*
23.
点和直线的关系
1 在左侧
2 在右侧
3 在直线上
*/
int relation(Point p) {
int c = sgn((p - s) ^ (e - s));
if (c < 0)
return 1;
else if (c > 0)
return 2;
else
return 3;
}
// 24. 点在线段上的判断,包括端点 第二个判断改为小于表示不包括端点
bool pointonseg(Point p) {
return sgn((p - s) ^ (e - s)) == 0 && sgn((p - s) * (p - e)) <= 0;
}
// 25. 两向量平行(对应直线平行或重合)
bool parallel(Line v) { return sgn((e - s) ^ (v.e - v.s)) == 0; }
/*
26.
两线段相交判断
2 规范相交
1 非规范相交
0 不相交
*/
int segcrosseg(Line v) {
int d1 = sgn((e - s) ^ (v.s - s)); // v.s 在 线段的哪一侧
int d2 = sgn((e - s) ^ (v.e - s)); // v.e 在 线段的哪一侧
int d3 = sgn((v.e - v.s) ^ (s - v.s));
int d4 = sgn((v.e - v.s) ^ (e - v.s));
if ((d1 ^ d2) == -2 && (d3 ^ d4) == -2)
return 2; // 跨立实验满足 一个是-1一个是1
// 1. v.s在线段上 || v.e 在线段上 || s 在另外一条线段上 || e在另外一条线段上
return (d1 == 0 && sgn((v.s - s) * (v.s - e)) <= 0) ||
(d2 == 0 && sgn((v.e - s) * (v.e - e)) <= 0) ||
(d3 == 0 && sgn((s - v.s) * (s - v.e)) <= 0) ||
(d4 == 0 && sgn((e - v.s) * (e - v.e)) <= 0);
}
/*
27.
直线与线段相交判断
*this line -v seg
2 规范相交
1 非规范相交
0 不相交
*/
int linecorssseg(Line v) { // v是线段
int d1 = sgn((e - s) ^ (v.s - s));
int d2 = sgn((e - s) ^ (v.e - s));
if ((d1 ^ d2) == -2)
return 2;
return (d1 == 0 || d2 == 0);
}
/*
28.
两直线关系
0 平行
1 重合
2 相交
*/
int linecrossline(Line v) {
// 如果平行,则看点是否在直线上
if ((*this).parallel(v))
return v.relation(s) == 3;
return 2;
}
/*
29.
求两直线的交点
要保证两直线不平行或重合
*/
Point crosspoint(Line v) {
db a1 = (v.e - v.s) ^ (s - v.s);
db a2 = (v.e - v.s) ^ (e - v.s);
return Point((s.x * a2 - e.x * a1) / (a2 - a1),
(s.y * a2 - e.y * a1) / (a2 - a1));
}
// 30. 点到直线的距离
db dispointtoline(Point p) { return fabs((p - s) ^ (e - s)) / length(); }
// 31. 点到线段的距离
db dispointtoseg(Point p) {
if (sgn((p - s) * (e - s)) < 0 || sgn((p - e) * (s - e)) < 0)
return min(p.distance(s), p.distance(e));
return dispointtoline(p);
}
/*
32.
返回线段到线段的距离
前提是两线段不相交,相交距离就是 0 了
*/
db dissegtoseg(Line v) {
return min(min(dispointtoseg(v.s), dispointtoseg(v.e)),
min(v.dispointtoseg(s), v.dispointtoseg(e)));
}
/*
33. 返回 p 在直线上的投影
*/
Point lineprog(Point p) {
return s + (((e - s) * ((e - s) * (p - s))) / ((e - s).len2()));
}
// 34. 返回点 p 关于直线的对称点
Point symmetrypoint(Point p) {
Point q = lineprog(p);
return Point(2 * q.x - p.x, 2 * q.y - p.y);
}
};
struct circle {
Point p;
db r;
circle() {}
circle(Point p, db r) : p(p), r(r) {}
void input() {
p.input();
scanf("%lf", &r);
}
// 通过圆心角确定圆上的一个点
Point point(double a) { return Point(p.x + cos(a) * r, p.y + sin(a) * r); }
bool operator==(circle v) { return (p == v.p) && sgn(r - v.r) == 0; }
bool operator<(circle v) const {
return ((p < v.p) || (p == v.p) && sgn(r - v.r) < 0);
}
// 面积
db area() { return pi * r * r; }
// 周长
db circumference() { return 2 * pi * r; }
/*
三角形的外接圆
需要Point 的 + / rotate() 以及 Line 的crosspoint()
利用两条边的中垂线得到圆心
UVA 12304
*/
circle(Point a, Point b, Point c) {
Line u = Line((a + b) / 2, ((a + b) / 2) + ((b - a).rotleft()));
Line v = Line((b + c) / 2, ((b + c) / 2) + ((c - b).rotleft()));
p = u.crosspoint(v);
r = p.distance(a);
}
/*
三角形的内切圆
bool t 没有作用,只是为了和上面外接圆函数区别
UVA 12304
*/
circle(Point a, Point b, Point c, bool t) {
Line u, v;
// u 为角 a 的平分线
db m = atan2(b.y - a.y, b.x - a.x), n = atan2(c.y - a.y, c.x - a.x);
u.s = a;
u.e = u.s + Point(cos((n + m) / 2), sin((n + m) / 2));
// v 为角 b 的平分线
m = atan2(a.y - b.y, a.x - b.x), n = atan2(c.y - b.y, c.x - b.x);
v.s = b;
v.e = v.s + Point(cos((n + m) / 2), sin((n + m) / 2));
p = u.crosspoint(v);
r = Line(a, b).dispointtoseg(p);
}
/*
点和圆的关系
0 圆外
1 圆上
2 圆内
*/
int relation(Point b) {
db dst = b.distance(p);
if (sgn(dst - r) < 0)
return 2;
else if (sgn(dst - r) == 0)
return 1;
return 0;
}
/*
线段和圆的关系
比较的是圆心到线段的距离和半径的关系
2 交
1 切
0 不交
*/
int relationseg(Line v) {
db dst = v.dispointtoseg(p);
if (sgn(dst - r) < 0)
return 2;
else if (sgn(dst - r) == 0)
return 1;
return 0;
}
int relationline(Line v) {
db dst = v.dispointtoline(p);
if (sgn(dst - r) < 0)
return 2;
else if (sgn(dst - r) == 0)
return 1;
return 0;
}
/*
两圆的关系
5 相离
4 外切
3 相交
2 内切
1 内含
*/
int relationcircle(circle v) {
db d = p.distance(v.p);
if (sgn(d - r - v.r) > 0)
return 5;
if (sgn(d - r - v.r) == 0)
return 4;
db l = fabs(r - v.r);
if (sgn(d - r - v.r) < 0 && sgn(d - l) > 0)
return 3;
if (sgn(d - l) == 0)
return 2;
if (sgn(d - l) < 0)
return 1;
}
/*
求两个圆的交点,返回0表示没有交点,返回1是一个交点,2是两个交点
*/
int pointcrosscircle(circle v, Point &p1, Point &p2) {
int rel = relationcircle(v);
if (rel == 1 || rel == 5)
return 0;
db d = p.distance(v.p);
db l = (d * d + r * r - v.r * v.r) / (2 * d);
db h = sqrt(r * r - l * l);
Point tmp = p + (v.p - p).trunc(l);
p1 = tmp + ((v.p - p).rotleft().trunc(h));
p2 = tmp + ((v.p - p).rotright().trunc(h));
if (rel == 2 || rel == 4)
return 1;
return 2;
}
// 求直线与圆的交点,返回交点个数
int pointcrossline(Line v, Point &p1, Point &p2) {
if (!(*this).relationline(v))
return 0;
Point a = v.lineprog(p);
db d = v.dispointtoline(p);
d = sqrt(r * r - d * d);
if (sgn(d) == 0) {
p1 = a;
p2 = a;
return 1;
}
p1 = a + (v.e - v.s).trunc(d);
p2 = a - (v.e - v.s).trunc(d);
return 2;
}
// 得到 通过a,b两点,半径为r1的两个圆
int getcircle(Point a, Point b, db r1, circle &c1, circle &c2) {
circle x(a, r1), y(b, r1);
int t = x.pointcrosscircle(y, c1.p, c2.p);
if (!t)
return 0;
c1.r = c2.r = r;
return t;
}
// 得到与直线 u 相切,过点 q, 半径为 r1 的圆
int getcircle(Line u, Point q, db r1, circle &c1, circle &c2) {
db dis = u.dispointtoline(q);
if (sgn(dis - r1 * 2) > 0)
return 0;
if (sgn(dis) == 0) {
c1.p = q + ((u.e - u.s).rotleft().trunc(r1));
c2.p = q + ((u.e - u.s).rotright().trunc(r1));
c1.r = c2.r = r1;
return 2;
}
Line u1 = Line((u.s + (u.e - u.s).rotleft().trunc(r1)),
(u.e + (u.e - u.s).rotleft().trunc(r1)));
Line u2 = Line((u.s + (u.e - u.s).rotright().trunc(r1)),
(u.e + (u.e - u.s).rotright().trunc(r1)));
circle cc = circle(q, r1);
Point p1, p2;
if (!cc.pointcrossline(u1, p1, p2))
cc.pointcrossline(u2, p1, p2);
c1 = circle(p1, r1);
if (p1 == p2) {
c2 = c1;
return 1;
}
c2 = circle(p2, r1);
return 2;
}
// 同时与直线u,v相切,半径为r1的圆 , u,v不平行
int getcircle(Line u, Line v, db r1, circle &c1, circle &c2, circle &c3,
circle &c4) {
if (u.parallel(v))
return 0;
Line u1 = Line(u.s + (u.e - u.s).rotleft().trunc(r1),
u.e + (u.e - u.s).rotleft().trunc(r1));
Line u2 = Line(u.s + (u.e - u.s).rotright().trunc(r1),
u.e + (u.e - u.s).rotright().trunc(r1));
Line v1 = Line(v.s + (v.e - v.s).rotleft().trunc(r1),
v.e + (v.e - v.s).rotright().trunc(r1));
Line v2 = Line(v.s + (v.e - v.s).rotright().trunc(r1),
v.e + (v.e - v.s).rotright().trunc(r1));
c1.r = c2.r = c3.r = c4.r = r1;
c1.p = u1.crosspoint(v1);
c2.p = u1.crosspoint(v2);
c3.p = u2.crosspoint(v1);
c4.p = u2.crosspoint(v2);
return 4;
}
// 同时与不相交圆 cx, cy 相切,半径为r1的圆
int getcircle(circle cx, circle cy, db r1, circle &c1, circle &c2) {
circle x(cx.p, r1 + cx.r), y(cy.p, r1 + cy.r);
int t = x.pointcrosscircle(y, c1.p, c2.p);
if (!t)
return 0;
c1.r = c2.r = r1;
return t;
}
// 过一点作圆的切线 (先判断点和圆的关系)
int tangentline(Point q, Line &u, Line &v) {
int x = relation(q);
if (x == 2)
return 0; //圆内
if (x == 1) { //圆上
u = Line(q, q + (q - p).rotleft());
v = u;
return 1;
}
db d = p.distance(q);
db l = r * r / d;
db h = sqrt(r * r - l * l);
u = Line(q, p + ((q - p).trunc(l) + (q - p).rotleft().trunc(h)));
v = Line(q, p + (q - p).trunc(l) + (q - p).rotright().trunc(h));
return 2;
}
// 求两圆相交的面积
db areacircle(circle v) {
int rel = relationcircle(v);
if (rel >= 4)
return 0.0;
if (rel <= 2)
return min(area(), v.area()); //内部
db d = p.distance(v.p);
db hf = (r + v.r + d) / 2.0;
db ss = 2 * sqrt(hf * (hf - r) * (hf - v.r) * (hf - d));
db a1 = acos((r * r + d * d - v.r * v.r) / (2.0 * r * d));
a1 = a1 * r * r;
db a2 = acos((v.r * v.r + d * d - r * r) / (2.0 * v.r * d));
a2 = a2 * v.r * v.r;
return a1 + a2 - ss;
}
// 求圆和三角形 pab 的相交面积
// POJ3675 HDU3982 HDU2892
db areatriangle(Point a, Point b) {
if (sgn((p - a) ^ (p - b)) == 0)
return 0.0;
Point q[5];
int len = 0;
q[len++] = a;
Line l(a, b);
Point p1, p2;
if (pointcrossline(l, q[1], q[2]) == 2) {
if (sgn((a - q[1]) * (b - q[1])) < 0)
q[len++] = q[1];
if (sgn((a - q[2]) * (b - q[2])) < 0)
q[len++] = q[2];
}
q[len++] = b;
if (len == 4 && sgn((q[0] - q[1]) * (q[2] - q[1])) > 0)
swap(q[1], q[2]);
db res = 0;
for (int i = 0; i < len - 1; i++) {
if (relation(q[i]) == 0 || relation(q[i + 1]) == 0) {
db arg = p.rad(q[i], q[i + 1]);
res += r * r * arg / 2.0;
} else {
res += fabs((q[i] - p) ^ (q[i + 1] - p)) / 2.0;
}
}
return res;
}
// a[i] 存放第 i 条公切线与 圆A 的交点
int getTangents(circle A, circle B, Point *a, Point *b) {
int cnt = 0;
// 以A为半径更大的那个圆进行计算
if (A.r < B.r)
return getTangents(B, A, b, a);
db d2 = (A.p - B.p).len2(); // 圆心距平方
db rdiff = A.r - B.r; // 半径差
db rsum = A.r + B.r; //半径和
if (d2 < rdiff * rdiff)
return 0; // 情况1,内含,没有公切线
Vector AB = B.p - A.p; // 向量AB,其模对应圆心距
db base = atan2(AB.y, AB.x); // 求出向量AB对应的极角
if (d2 == 0 && A.r == B.r)
return -1; // 情况3,两个圆重合,无限多切线
if (d2 == rdiff * rdiff) { // 情况2,内切,有一条公切线
a[cnt] = A.point(base);
b[cnt] = B.point(base);
cnt++;
return 1;
}
// 求外公切线
db ang = acos((A.r - B.r) / sqrt(d2)); //求阿尔法
// 两条外公切线
a[cnt] = A.point(base + ang);
b[cnt] = B.point(base + ang);
cnt++;
a[cnt] = A.point(base - ang);
b[cnt] = B.point(base - ang);
cnt++;
if (d2 == rsum * rsum) { // 情况5,外切,if里面求出内公切线
a[cnt] = A.point(base);
b[cnt] = B.point(pi + base);
cnt++;
} else if (d2 > rsum * rsum) { //情况6,相离,再求出内公切线
db ang = acos((A.r + B.r) / sqrt(d2));
a[cnt] = A.point(base + ang);
b[cnt] = B.point(pi + base + ang);
cnt++;
a[cnt] = A.point(base - ang);
b[cnt] = B.point(pi + base - ang);
cnt++;
}
// 此时,d2 < rsum * rsum 代表情况 4 只有两条外公切线
return cnt;
}
struct circles {
circle c[N];
double ans[N];
double pre[N];
int n;
circles() {}
void add(circle cc) { c[n++] = cc; }
// x 包含在 y 中
bool inner(circle x, circle y) {
if (x.relationcircle(y) != 1)
return 0;
return sgn(x.r - y.r) <= 0 ? 1 : 0;
}
double areaarc(double th, double r) { return 0.5 * r * r * (th - sin(th)); }
// 圆的面积并,去掉内含的圆
void init_or() {
int i, j, k = 0;
bool mark[N] = {0};
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
if (i != j && !mark[j]) {
if ((c[i] == c[j]) || inner(c[i], c[j]))
break;
}
}
if (j < n)
mark[i] = 1;
}
for (i = 0; i < n; i++) {
if (!mark[i]) {
c[k++] = c[i];
}
}
n = k;
}
// 圆的面积交,去掉内含的圆
void init_and() {
int i, j, k = 0;
bool mark[N] = {0};
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
if (i != j && !mark[j]) {
if ((c[i] == c[j]) || inner(c[j], c[i]))
break;
}
}
if (j < n)
mark[i] = 1;
}
for (i = 0; i < n; i++) {
if (!mark[i]) {
c[k++] = c[i];
}
}
n = k;
}
void getarea() {
memset(ans, 0, sizeof ans);
vector<pair<double, int>> v;
for (int i = 0; i < n; i++) {
v.clear();
v.push_back(make_pair(-pi, 1));
v.push_back(make_pair(pi, -1));
for (int j = 0; j < n; j++) {
if (i != j) {
Point q = (c[j].p - c[i].p);
db ab = q.len(), ac = c[i].r, bc = c[j].r;
if (sgn(ab + ac - bc) <= 0) {
v.push_back(make_pair(-pi, 1));
v.push_back(make_pair(pi, -1));
continue;
}
if (sgn(ab + bc - ac) <= 0)
continue;
if (sgn(ab - ac - bc) > 0)
continue;
double th = atan2(q.y, q.x),
fai = acos((ac * ac + ab * ab - bc * bc) / (2.0 * ac * ab));
double a0 = th - fai;
if (sgn(a0 + pi) < 0)
a0 += 2 * pi;
db a1 = th + fai;
if (sgn(a1 - pi) > 0)
a1 -= 2 * pi;
if (sgn(a0 - a1) > 0) {
v.push_back(make_pair(a0, 1));
v.push_back(make_pair(pi, -1));
v.push_back(make_pair(-pi, 1));
v.push_back(make_pair(a1, -1));
} else {
v.push_back(make_pair(a0, 1));
v.push_back(make_pair(a1, -1));
}
}
}
sort(v.begin(), v.end());
int cur = 0;
for (int j = 0; j < v.size(); j++) {
if (cur && sgn(v[j].first - pre[cur])) {
ans[cur] += areaarc(v[j].first - pre[cur], c[i].r);
ans[cur] += 0.5 * (c[i].point(pre[cur]) ^ c[i].point(v[j].first));
}
cur += v[j].second;
pre[cur] = v[j].first;
}
}
}
} cs;
}
struct polygon {
int n;
Point p[maxp];
Line l[maxp];
void input(int n) {
this->n = n;
for (int i = 0; i < n; i++)
p[i].input();
}
// 得到所有边
void getline() {
for (int i = 0; i < n; i++) {
l[i] = Line(p[i], p[(i + 1) % n]);
}
}
// 以 p0 为标准极角排序
struct cmp {
Point p;
cmp(const Point &p0) { p = p0; }
bool operator()(const Point &aa, const Point &bb) {
Point a = aa, b = bb;
int d = sgn((a - p) ^ (b - p));
if (d == 0) {
return sgn(a.distance(p) - b.distance(p)) < 0;
}
return d > 0;
}
};
/*
进行极角排序
首先找打最左下角的点
需要重载好Point的 < 操作符
*/
void norm() {
Point mi = p[0];
for (int i = 1; i < n; i++)
mi = min(mi, p[i]);
sort(p, p + n, cmp(mi));
}
// 得到周长
db getcircumference() {
db sum = 0;
for (int i = 0; i < n; i++) {
sum += p[i].distance(p[(i + 1) % n]);
}
return sum;
}
// 得到面积
db getarea() {
db sum = 0;
// 以原点为划分点
for (int i = 0; i < n; i++) {
sum += (p[i] ^ p[(i + 1) % n]);
}
return fabs(sum) / 2;
}
// 得到方向,1 表示逆时针,0表示顺时针
bool getdir() {
db sum = 0;
for (int i = 0; i < n; i++) {
sum += (p[i] ^ p[(i + 1) % n]);
}
if (sgn(sum) > 0)
return 1;
return 0;
}
// 得到重心
Point getbarycentre() {
Point ret(0, 0);
db area = 0;
for (int i = 1; i < n - 1; i++) {
db tmp = (p[i] - p[0]) ^ (p[i + 1] - p[0]);
if (sgn(tmp) == 0)
continue;
area += tmp;
ret.x += (p[0].x + p[i].x + p[i + 1].x) / 3 * tmp;
ret.y += (p[0].y + p[i].y + p[i + 1].y) / 3 * tmp;
}
if (sgn(area))
ret = ret / area;
return ret;
}
/*
得到凸包 凸包点编号0 ~ n-1
*/
void getconvex(polygon &convex) {
sort(p, p + n);
convex.n = n;
for (int i = 0; i < min(n, 2); i++) {
convex.p[i] = p[i];
}
if (convex.n == 2 && (convex.p[0] == convex.p[1]))
convex.n--;
if (n <= 2)
return;
int &top = convex.n;
top = 1;
for (int i = 2; i < n; i++) {
while (top &&
sgn((convex.p[top] - p[i]) ^ (convex.p[top - 1] - p[i])) <= 0)
top--;
convex.p[++top] = p[i];
}
int temp = top;
convex.p[++top] = p[n - 2];
for (int i = n - 3; i >= 0; i--) {
while (top != temp &&
sgn((convex.p[top] - p[i]) ^ (convex.p[top - 1] - p[i])) <= 0)
top--;
convex.p[++top] = p[i];
}
if (convex.n == 2 && (convex.p[0] == convex.p[1]))
convex.n--;
convex.norm();
}
void Graham(polygon &convex) {
norm();
int &top = convex.n;
top = 0;
if (n == 1) {
top = 1;
convex.p[0] = p[0];
return;
}
if (n == 2) {
top = 2;
convex.p[0] = p[0];
convex.p[1] = p[1];
if (convex.p[0] == convex.p[1])
top--;
return;
}
convex.p[0] = p[0];
convex.p[1] = p[1];
top = 2;
for (int i = 2; i < n; i++) {
while (top > 1 && sgn((convex.p[top - 1] - convex.p[top - 2]) ^
(p[i] - convex.p[top - 2])) <= 0)
top--;
convex.p[top++] = p[i];
}
if (convex.n == 2 && (convex.p[0] == convex.p[1]))
convex.n--;
}
// 判断是不是凸的
bool isconvex() {
bool s[3];
memset(s, false, sizeof s);
for (int i = 0; i < n; i++) {
int j = (i + 1) % n;
int k = (j + 1) % n;
s[sgn((p[j] - p[i]) ^ (p[k] - p[i])) + 1] = true;
if (s[0] && s[2])
return false;
}
return true;
}
/*
判断点和任意多边形的关系
3 点上
2 边上
1 内部
0 外部
*/
int relationpoint(Point q) {
for (int i = 0; i < n; i++) {
if (p[i] == q)
return 3;
}
getline();
for (int i = 0; i < n; i++) {
if (l[i].pointonseg(q))
return 2;
}
int cnt = 0;
for (int i = 0; i < n; i++) {
int j = (i + 1) % n;
int k = sgn((q - p[j]) ^ (p[i] - p[j]));
int u = sgn(p[i].y - q.y);
int v = sgn(p[j].y - q.y);
if (k > 0 && u < 0 && v >= 0)
cnt++;
if (k < 0 && v < 0 && u >= 0)
cnt--;
}
return cnt != 0;
}
//直线 u 切割凸多边形左侧
//注意直线方向
// HDU3982
void convexcut(Line u, polygon &po) {
int &top = po.n;
top = 0;
for (int i = 0; i < n; i++) {
int d1 = sgn((u.e - u.s) ^ (p[i] - u.s));
int d2 = sgn((u.e - u.s) ^ (p[(i + 1) % n] - u.s));
if (d1 >= 0)
po.p[top++] = p[i];
if (d1 * d2 < 0)
po.p[top++] = u.crosspoint(Line(p[i], p[(i + 1) % n]));
}
}
// 多边形和圆交的面积
db areacircle(circle c) {
db ans = 0;
for (int i = 0; i < n; i++) {
int j = (i + 1) % n;
if (sgn((p[j] - c.p) ^ (p[i] - c.p)) >= 0)
ans += c.areatriangle(p[i], p[j]);
else
ans -= c.areatriangle(p[i], p[j]);
}
return fabs(ans);
}
/*
多边形与的关系
2. 圆完全在多边形内
1. 圆在多边形里面,碰到了多边形边界
0. 其他
*/
db relationcircle(circle c) {
getline();
int x = 2;
if (relationpoint(c.p) != 1)
return 0; // 圆心不在内部
for (int i = 0; i < n; i++) {
if (c.relationseg(l[i]) == 2)
return 0;
if (c.relationseg(l[i]) == 1)
x = 1; // 相切
}
return x;
}
db minRectangleCover() {
if (n < 3)
return 0.0;
p[n] = p[0];
db ans = -1;
int up = 1, r = 1, l;
for (int i = 0; i < n; i++) {
Point vec = p[i + 1] - p[i];
while (sgn((vec ^ (p[up + 1] - p[i])) - (vec ^ (p[up] - p[i]))) >= 0)
up = (up + 1) % n;
while (sgn((vec * (p[r + 1] - p[i])) - (vec * (p[r] - p[i]))) >= 0)
r = (r + 1) % n;
if (i == 0)
l = r;
while (sgn((vec * (p[l + 1] - p[i])) - (vec * (p[l] - p[i]))) <= 0)
l = (l + 1) % n;
db d = (p[i] - p[i + 1]).len2();
db tmp = (vec ^ (p[up] - p[i])) *
((vec * (p[r] - p[i])) - (vec * (p[l] - p[i]))) / d;
if (ans < 0 || ans > tmp)
ans = tmp;
}
return ans;
}
// 最远的一对点的距离
db diameter() {
if (n == 2)
return p[0].distance(p[1]);
int i = 0, j = 0;
for (int k = 0; k < n; k++) {
if (p[i] < p[k])
i = k;
if (!(p[j] < p[k]))
j = k;
}
int si = i, sj = j;
db res = 0;
while (i != sj || j != si) {
res = max(res, p[i].distance(p[j]));
int ni = (i + 1) % n;
int nj = (j + 1) % n;
if (sgn((p[ni] - p[i]) ^ (p[nj] - p[j])) <= 0) {
i = ni;
} else
j = nj;
}
return res;
}
}