-
Notifications
You must be signed in to change notification settings - Fork 0
/
bst_TEA_modified.py
994 lines (899 loc) · 39.5 KB
/
bst_TEA_modified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
"""
"""
from __future__ import annotations
import pandas as pd
import numpy as np
import flexsolve as flx
from copy import copy as copy_
from numba import njit
from math import ceil
from warnings import warn
import biosteam as bst
from typing import Optional, Sequence, Collection, TYPE_CHECKING
from biosteam._unit import Unit
from numpy.typing import NDArray
if TYPE_CHECKING: from biosteam._system import System
import qsdsan as qs
__all__ = ('TEA',)
cashflow_columns = ('Depreciable capital [MM$]',
'Fixed capital investment [MM$]',
'Working capital [MM$]',
'Depreciation [MM$]',
'Loan [MM$]',
'Loan interest payment [MM$]',
'Loan payment [MM$]',
'Loan principal [MM$]',
'Annual operating cost (excluding depreciation) [MM$]',
'Sales [MM$]',
'Tax [MM$]',
'Incentives [MM$]',
'Net earnings [MM$]',
'Cash flow [MM$]',
'Discount factor',
'Net present value (NPV) [MM$]',
'Cumulative NPV [MM$]')
# %% Depreciation utilities
@njit(cache=True)
def generate_DDB_schedule(years):
val = 1.
arr = np.ones(years)
factor = 2. / years
for i in range(years):
depreciation = val * factor
arr[i] = depreciation
val -= depreciation
return arr
@njit(cache=True)
def generate_SYD_schedule(years):
digit_sum = years * (years + 1.) * 0.5
arr = np.ones(years)
for i in range(years):
arr[i] = (years - i) / digit_sum
return arr
# %% Utilities for TEA calculations
@njit(cache=True)
def NPV_at_IRR(IRR, cashflow_array, duration_array):
"""Return NPV at given IRR and cashflow data."""
return (cashflow_array/(1.+IRR)**duration_array).sum()
@njit(cache=True)
def initial_loan_principal(loan, interest):
principal = 0
k = 1. + interest
for i in loan:
principal += i
principal *= k
return principal
@njit(cache=True)
def final_loan_principal(payment, principal, interest, years):
for iter in range(years):
principal += principal * interest - payment
return principal
def solve_payment(payment, loan, interest, years):
principal = initial_loan_principal(loan, interest)
payment = flx.aitken_secant(final_loan_principal,
payment, payment+10., 1., 10.,
args=(principal, interest, years),
maxiter=200, checkiter=False)
return payment
@njit(cache=True)
def add_replacement_cost_to_cashflow_array(equipment_installed_cost,
equipment_lifetime,
cashflow_array,
venture_years,
start):
N_purchases = ceil(venture_years / equipment_lifetime)
for i in range(1, N_purchases):
cashflow_array[start + i * equipment_lifetime] += equipment_installed_cost
def add_all_replacement_costs_to_cashflow_array(unit_capital_cost, cashflow_array,
venture_years, start,
lang_factor):
equipment_lifetime = unit_capital_cost.equipment_lifetime
if equipment_lifetime:
if lang_factor:
installed_costs = {i: j*lang_factor for i, j in unit_capital_cost.purchase_costs.items()}
else:
installed_costs = unit_capital_cost.installed_costs
if isinstance(equipment_lifetime, int):
add_replacement_cost_to_cashflow_array(sum(installed_costs.values()),
equipment_lifetime,
cashflow_array,
venture_years,
start)
elif isinstance(equipment_lifetime, dict):
for name, installed_cost in installed_costs.items():
lifetime = equipment_lifetime.get(name)
if lifetime:
add_replacement_cost_to_cashflow_array(installed_cost,
lifetime,
cashflow_array,
venture_years,
start)
@njit(cache=True)
def fill_taxable_and_nontaxable_cashflows_without_loans(
D, C, S, C_FC, C_WC, FCI, WC, TDC, VOC, FOC, sales,
startup_time,
startup_VOCfrac,
startup_FOCfrac,
startup_salesfrac,
construction_schedule,
start):
# Cash flow data and parameters
# C_FC: Fixed capital
# C_WC: Working capital
# D: Depreciation
# C: Annual operating cost (excluding depreciation)
# S: Sales
w0 = startup_time
w1 = 1. - w0
C[start] = (w0 * startup_VOCfrac * VOC + w1 * VOC
+ w0 * startup_FOCfrac * FOC + w1 * FOC)
S[start] = w0 * startup_salesfrac * sales + w1 * sales
start1 = start + 1
C[start1:] = VOC + FOC
S[start1:] = sales
C_FC[:start] = FCI * construction_schedule
C_WC[start-1] = WC
C_WC[-1] = -WC
def taxable_and_nontaxable_cashflows(
unit_capital_costs,
D, C, S, C_FC, C_WC, Loan, LP,
FCI, WC, TDC, VOC, FOC, sales,
startup_time,
startup_VOCfrac,
startup_FOCfrac,
startup_salesfrac,
construction_schedule,
finance_interest,
finance_years,
finance_fraction,
start, years,
lang_factor,
):
# Cash flow data and parameters
# C_FC: Fixed capital
# C_WC: Working capital
# Loan: Money gained from loan
# LP: Loan payment
# D: Depreciation
# C: Annual operating cost (excluding depreciation)
# S: Sales
fill_taxable_and_nontaxable_cashflows_without_loans(
D, C, S, C_FC, C_WC, FCI, WC, TDC, VOC, FOC, sales,
startup_time,
startup_VOCfrac,
startup_FOCfrac,
startup_salesfrac,
construction_schedule,
start
)
for i in unit_capital_costs:
add_all_replacement_costs_to_cashflow_array(i, C_FC, years, start, lang_factor)
if finance_interest:
interest = finance_interest
years = finance_years
Loan[:start] = loan = finance_fraction*(C_FC[:start]+C_WC[:start])
LP[start:start + years] = solve_payment(loan.sum()/years * (1. + interest),
loan, interest, years)
taxable_cashflow = S - C - D - LP
nontaxable_cashflow = D + Loan - C_FC - C_WC
else:
taxable_cashflow = S - C - D
nontaxable_cashflow = D - C_FC - C_WC
return taxable_cashflow, nontaxable_cashflow
def NPV_with_sales(
sales,
taxable_cashflow,
nontaxable_cashflow,
depreciation,
sales_coefficients,
discount_factors,
fill_tax_and_incentives,
):
"""Return NPV with an additional annualized sales."""
taxable_cashflow = taxable_cashflow + sales * sales_coefficients
tax = np.zeros_like(taxable_cashflow)
incentives = tax.copy()
fill_tax_and_incentives(incentives, taxable_cashflow, nontaxable_cashflow, tax, depreciation)
cashflow = nontaxable_cashflow + taxable_cashflow + incentives - tax
return (cashflow/discount_factors).sum()
# %% Techno-Economic Analysis
_duration_array_cache = {}
class TEA:
"""
Abstract TEA class for cash flow analysis.
**Abstract methods**
_DPI(installed_equipment_cost) -> float
Should return the direct permanent investment (DPI) given the
installed equipment cost.
_TDC(DPI) -> float
Should take direct permanent investment (DPI) as an argument
and return total depreciable capital (TDC).
_FCI(TDC) -> float
Should take total depreciable capital (TDC) as an argument and return
fixed capital investment (FCI).
_FOC(FCI) -> float
Should take fixed capital investment (FCI) as an arguments and return
fixed operating cost without depreciation (FOC).
_fill_tax_and_incentives(incentives, taxable_cashflow, nontaxable_cashflow, tax)
Should take two empty 1d arrays and fill them with incentive and tax cash flows.
Additional parameters include taxable_cashflow (sales - costs -
depreciation - payments), and nontaxable_cashflow (depreciation - capital
cost - working capital).
Parameters
----------
system :
Should contain feed and product streams.
IRR :
Internal rate of return (fraction).
duration :
Start and end year of venture (e.g. (2018, 2038)).
depreciation :
Depreciation schedule array or a string with format '{schedule}{years}',
where years is the number of years until the property value is zero
and schedule is one of the following: 'MACRS' (Modified Accelerated Cost Recovery System),
'SL' (straight line), 'DDB' (double declining balance), or
'SYD' (sum-of-the-years' digits). If years is not given, it defaults
to the venture years at run time.
operating_days :
Number of operating days per year.
income_tax :
Combined federal and state income tax rate (fraction).
lang_factor :
Lang factor for getting fixed capital investment
from total purchase cost. If no lang factor, estimate
capital investment using bare module factors.
construction_schedule :
Construction investment fractions per year (e.g. (0.5, 0.5) for 50%
capital investment in the first year and 50% investment in the second).
startup_months :
Startup time in months.
startup_FOCfrac :
Fraction of fixed operating costs incurred during startup.
startup_VOCfrac :
Fraction of variable operating costs incurred during startup.
startup_salesfrac :
Fraction of sales achieved during startup.
WC_over_FCI :
Working capital as a fraction of fixed capital investment.
finance_interest :
Yearly interest of capital cost financing as a fraction.
finance_years :
Number of years the loan is paid for.
finance_fraction :
Fraction of capital cost that needs to be financed.
Warning
-------
When using a Lang factor, a short-cut to get the FCI, we cannot work
backwards to get installed equipment cost. For practical purposes, the
code assumes that installed equipment cost, total depreciable capital
(TDC), and fixed capital investment (FCI) are the same when the Lang
factor is in use. In actuality, the installed equipment cost should be
less than the fixed capital investment.
Examples
--------
:doc:`../tutorial/Techno-economic_analysis`
"""
__slots__ = ('system', 'income_tax', 'WC_over_FCI',
'finance_interest', 'finance_years', 'finance_fraction',
'_construction_schedule', '_startup_time',
'startup_FOCfrac', 'startup_VOCfrac', 'startup_salesfrac',
'_startup_schedule', '_operating_days',
'_duration', '_depreciation_key', '_depreciation',
'_years', '_duration', '_start', 'IRR', '_IRR', '_sales',
'_duration_array_cache')
#: Available depreciation schedules. Defaults include modified
#: accelerated cost recovery system from U.S. IRS publication 946 (MACRS),
#: half-year convention.
depreciation_schedules: dict[tuple(str, int), NDArray[np.float64]] = {
('MACRS', 3): np.array([.3333, .4445, .1481, .0741]),
('MACRS', 5): np.array([.2000, .3200, .1920,
.1152, .1152, .0576]),
('MACRS', 7): np.array([.1429, .2449, .1749,
.1249, .0893, .0892,
.0893, .0446]),
('MACRS', 10): np.array([.1000, .1800, .1440,
.1152, .0922, .0737,
.0655, .0655, .0656,
.0655, .0328]),
('MACRS', 15): np.array([.0500, .0950, .0855,
.0770, .0693, .0623,
.0590, .0590, .0591,
.0590, .0591, .0590,
.0591, .0590, .0591,
.0295]),
('MACRS', 20): np.array([0.03750, 0.07219, 0.06677,
0.06177, 0.05713, 0.05285,
0.04888, 0.04522, 0.04462,
0.04461, 0.04462, 0.04461,
0.04462, 0.04461, 0.04462,
0.04461, 0.04462, 0.04461,
0.04462, 0.04461, 0.02231])
}
#: Investment site factors used to multiply the total permanent
#: investment (TPI), also known as total fixed capital (FCI), to
#: account for locality cost differences based on labor availability,
#: workforce efficiency, local rules, etc.
investment_site_factors: dict[str, float] = {
'U.S. Gulf Coast': 1.0,
'U.S. Southwest': 0.95,
'U.S. Northwest': 1.10,
'U.S. Midwest': 1.15,
'U.S. West Coast': 1.25,
'Western Europe': 1.2,
'Mexico': 0.95,
'Japan': 1.15,
'Pacific Rim': 1.0,
'India': 0.85,
}
def __init_subclass__(cls, isabstract=False):
if isabstract: return
for method in ('_DPI', '_TDC', '_FCI', '_FOC'):
if not hasattr(cls, method):
breakpoint()
raise NotImplementedError(
f"subclass must implement a '{method}' method unless the "
"'isabstract' keyword argument is True"
)
def copy(self, system=None):
"""Create a copy."""
new = copy_(self)
if system is not None:
new.system = system
system._TEA = new
return new
def __init__(self, system: System, IRR: float, duration: tuple[int, int],
depreciation: str|NDArray[np.float64], income_tax: float,
operating_days: float, lang_factor: float|None,
construction_schedule: Sequence[float],
startup_months: float, startup_FOCfrac: float, startup_VOCfrac: float,
startup_salesfrac: float, WC_over_FCI: float, finance_interest: float,
finance_years: int, finance_fraction: float):
#: System being evaluated.
self.system: System = system
self.duration = duration
self.depreciation = depreciation
self.construction_schedule = construction_schedule
self.startup_months = startup_months
self.operating_days = operating_days
#: Internal rate of return (fraction).
self.IRR: float = IRR
#: Combined federal and state income tax rate (fraction).
self.income_tax: float = income_tax
self.lang_factor = lang_factor
#: Fraction of fixed operating costs incurred during startup.
self.startup_FOCfrac: float = startup_FOCfrac
#: Fraction of variable operating costs incurred during startup.
self.startup_VOCfrac: float = startup_VOCfrac
#: Fraction of sales achieved during startup.
self.startup_salesfrac: float = startup_salesfrac
#: Working capital as a fraction of fixed capital investment.
self.WC_over_FCI: float = WC_over_FCI
#: Yearly interest of capital cost financing as a fraction.
self.finance_interest: float = finance_interest
#: Number of years the loan is paid for.
self.finance_years: int = finance_years
#: Fraction of capital cost that needs to be financed.
self.finance_fraction: float = finance_fraction
#: Guess IRR for solve_IRR method
self._IRR: float = IRR
#: Guess cost for solve_price method
self._sales: float = 0
#: For convenience, set a TEA attribute for the system
system._TEA = self
def _get_duration(self):
return (self._start, self._years)
def _DPI(self, installed_equipment_cost):
return installed_equipment_cost # For compatibility with Lang factors
def _TDC(self, DPI):
return DPI # For compatibility with Lang factors
def _FCI(self, TDC):
return TDC # For compatibility with Lang factors
@property
def units(self) -> set[Unit]:
"""All unit operations with costs."""
return self.system.cost_units
@property
def feeds(self) -> list[Unit]:
"""All feed streams."""
return self.system.feeds
@property
def products(self) -> list[Unit]:
"""All product streams."""
return self.system.products
@property
def operating_days(self) -> float:
"""Number of operating days per year."""
return self.system.operating_hours / 24
@operating_days.setter
def operating_days(self, days):
"""Number of operating days per year."""
self.operating_hours = 24 * days
@property
def operating_hours(self) -> float:
"""Number of operating hours per year."""
return self.system.operating_hours
@operating_hours.setter
def operating_hours(self, hours):
self.system.operating_hours = hours
@property
def lang_factor(self) -> float|None:
"""
Lang factor for getting fixed capital investment from
total purchase cost. If no lang factor, estimate capital investment
using bare module factors.
"""
return self.system.lang_factor
@lang_factor.setter
def lang_factor(self, lang_factor):
self.system.lang_factor = lang_factor
@property
def duration(self) -> tuple[int, int]:
"""Start and end year of venture."""
return self._duration
@duration.setter
def duration(self, duration):
start, end = [int(i) for i in duration]
self._duration = (start, end)
self._years = end - start
@property
def depreciation(self) -> str|NDArray[np.float64]:
"""
Depreciation schedule array or a string with format '{schedule}{years}',
where years is the number of years until the property value is zero
and schedule is one of the following: 'MACRS' (Modified Accelerated Cost Recovery System),
'SL' (straight line), 'DDB' (double declining balance), or
'SYD' (sum-of-the-years' digits). If years is not given, it defaults
to the venture years at run time.
"""
return self._depreciation
@depreciation.setter
def depreciation(self, depreciation):
if isinstance(depreciation, str):
self._depreciation_key = self._depreciation_key_from_name(depreciation)
self._depreciation = depreciation
else:
try:
self._depreciation = np.array(depreciation, dtype=float)
except:
raise TypeError(
f"invalid depreciation type '{type(depreciation).__name__}'; "
"depreciation must be either an array or a string"
) from None
else:
self._depreciation_key = None
@classmethod
def _depreciation_key_from_name(cls, name):
for prefix in ('MACRS', 'SL', 'DDB', 'SYD'):
if name.startswith(prefix):
years = name[len(prefix):]
key = (prefix, int(years) if years else None)
if prefix == 'MACRS' and key not in cls.depreciation_schedules:
raise ValueError(
f"depreciation name {repr(name)} has a valid "
"format, but is not yet implemented in BioSTEAM"
)
return key
raise ValueError(
f"invalid depreciation name {repr(name)}; "
"name must have format '{schedule}{years}', "
"where years is the number of years until the property value is zero "
"and schedule is one of the following: 'MACRS' (Modified Accelerated Cost Recovery System), "
"'SL' (straight line), 'DDB' (double declining balance), or "
"'SYD' (sum-of-the-years' digits)"
)
@classmethod
def _depreciation_array_from_key(cls, key):
depreciation_schedules = cls.depreciation_schedules
if key in depreciation_schedules:
return depreciation_schedules[key]
else:
schedule, years = key
if schedule == 'SL':
arr = np.full(years, 1./years)
elif schedule == 'DDB':
arr = generate_DDB_schedule(years)
elif schedule == 'SYD':
arr = generate_SYD_schedule(years)
else: # pragma: no cover
raise RuntimeError(f'unknown depreciation schedule {repr(schedule)}')
depreciation_schedules[key] = arr
return arr
@property
def construction_schedule(self) -> Sequence[float]:
"""Construction investment fractions per year, starting from year 0.
For example, for 50% capital investment in year 0 and 50% investment
in year 1, use (0.5, 0.5)."""
return self._construction_schedule
@construction_schedule.setter
def construction_schedule(self, schedule):
self._construction_schedule = np.array(schedule, dtype=float)
self._start = len(schedule)
@property
def startup_months(self) -> float:
return self._startup_time * 12.
@startup_months.setter
def startup_months(self, months):
assert months <= 12., "startup time must be less than a year"
self._startup_time = months/12.
@property
def sales(self) -> float:
"""Total sales [USD/yr]."""
return self.system.sales
@property
def material_cost(self) -> float:
"""Total material cost [USD/yr]."""
return self.system.material_cost
@property
def utility_cost(self) -> float:
"""Total utility cost [USD/yr]."""
# return self.system.utility_cost
result = []
for i in qs.Flowsheet.flowsheet.default.unit:
PandH = i.utility_cost*self.operating_days*24 + sum([k for k in i.add_OPEX.values()])*self.operating_days*24
result.append(PandH)
return sum(result)
@property
def purchase_cost(self):
"""Total purchase cost [USD]."""
return self.system.purchase_cost
@property
def installed_equipment_cost(self) -> float:
"""Total installed cost [USD]."""
return self.system.installed_equipment_cost
@property
def DPI(self) -> float:
"""Direct permanent investment [USD]."""
return self._DPI(self.installed_equipment_cost)
@property
def TDC(self) -> float:
"""Total depreciable capital [USD]."""
return self._TDC(self.DPI)
@property
def FCI(self) -> float:
"""Fixed capital investment [USD]."""
return self._FCI(self.TDC)
@property
def TCI(self) -> float:
"""Total capital investment [USD]."""
return (1. + self.WC_over_FCI)*self.FCI
@property
def FOC(self) -> float:
"""Fixed operating costs [USD/yr]."""
return self._FOC(self.FCI)
@property
def VOC(self) -> float:
"""Variable operating costs [USD/yr]."""
return self.material_cost + self.utility_cost
@property
def AOC(self) -> float:
"""Annual operating cost excluding depreciation [USD/yr]."""
return self.FOC + self.VOC
@property
def working_capital(self) -> float:
return self.WC_over_FCI * self.FCI
@property
def annual_depreciation(self) -> float:
"""Depreciation [USD/yr] equivalent to TDC dived by the the duration of the venture."""
return self.TDC/(self.duration[1]-self.duration[0])
@property
def ROI(self) -> float:
"""Return on investment [1/yr] without accounting for annualized depreciation."""
return self.net_earnings / self.TCI
@property
def net_earnings(self) -> float:
"""Net earnings without accounting for annualized depreciation."""
net_earnings = self.sales - self.AOC
if net_earnings < 0:
return net_earnings
else:
return (1 - self.income_tax) * net_earnings
@property
def PBP(self) -> float:
"""Pay back period [yr] without accounting for annualized depreciation."""
FCI = self.FCI
net_earnings = self.net_earnings
return FCI/net_earnings
def _get_duration_array(self):
key = start, years = (self._start, self._years)
if key in _duration_array_cache:
duration_array = _duration_array_cache[key]
else:
if len(_duration_array_cache) > 100: _duration_array_cache.clear()
_duration_array_cache[key] = duration_array = np.arange(-start+1, years+1, dtype=float)
return duration_array
def _get_depreciation_array(self):
key = self._depreciation_key
if key is None:
return self._depreciation
else:
schedule, years = self._depreciation_key
if years is None:
years = self._years
key = (schedule, years)
return self._depreciation_array_from_key(key)
def _fill_depreciation_array(self, D, start, years, TDC):
depreciation_array = self._get_depreciation_array()
N_depreciation_years = depreciation_array.size
if N_depreciation_years > years:
raise RuntimeError('depreciation schedule is longer than plant lifetime')
D[start:start + N_depreciation_years] = TDC * depreciation_array
def get_cashflow_table(self):
"""Return DataFrame of the cash flow analysis."""
# Cash flow data and parameters
# index: Year since construction until end of venture
# C_D: Depreciable capital
# C_FC: Fixed capital
# C_WC: Working capital
# D: Depreciation
# L: Loan revenue
# LI: Loan interest payment
# LP: Loan payment
# LPl: Loan principal
# C: Annual operating cost (excluding depreciation)
# S: Sales
# T: Tax
# I: Incentives
# NE: Net earnings
# CF: Cash flow
# DF: Discount factor
# NPV: Net present value
# CNPV: Cumulative NPV
TDC = self.TDC
FCI = self._FCI(TDC)
start = self._start
years = self._years
FOC = self._FOC(FCI)
VOC = self.VOC
sales = self.sales
length = start + years
C_D, C_FC, C_WC, D, L, LI, LP, LPl, C, S, T, I, NE, CF, DF, NPV, CNPV = data = np.zeros((17, length))
self._fill_depreciation_array(D, start, years, TDC)
w0 = self._startup_time
w1 = 1. - w0
C[start] = (w0*self.startup_VOCfrac*VOC + w1*VOC
+ w0*self.startup_FOCfrac*FOC + w1*FOC)
S[start] = w0*self.startup_salesfrac*sales + w1*sales
start1 = start + 1
C[start1:] = VOC + FOC
S[start1:] = sales
WC = self.WC_over_FCI * FCI
C_D[:start] = TDC*self._construction_schedule
C_FC[:start] = FCI*self._construction_schedule
C_WC[start-1] = WC
C_WC[-1] = -WC
system = self.system
lang_factor = system.lang_factor
unit_capital_costs = system.unit_capital_costs.values() if isinstance(system, bst.AgileSystem) else system.cost_units
for i in unit_capital_costs: add_all_replacement_costs_to_cashflow_array(i, C_FC, years, start, lang_factor)
if self.finance_interest:
interest = self.finance_interest
years = self.finance_years
end = start + years
L[:start] = loan = self.finance_fraction*(C_FC[:start]+C_WC[:start])
f_interest = (1. + interest)
LP[start:end] = solve_payment(loan.sum()/years * f_interest,
loan, interest, years)
loan_principal = 0
for i in range(end):
LI[i] = li = (loan_principal + L[i]) * interest
LPl[i] = loan_principal = loan_principal - LP[i] + li + L[i]
taxable_cashflow = S - C - D - LP
nontaxable_cashflow = D + L - C_FC - C_WC
else:
taxable_cashflow = S - C - D
nontaxable_cashflow = D - C_FC - C_WC
self._fill_tax_and_incentives(I, taxable_cashflow, nontaxable_cashflow, T, D)
NE[:] = taxable_cashflow + I - T
CF[:] = NE + nontaxable_cashflow
DF[:] = 1/(1.+self.IRR)**self._get_duration_array()
NPV[:] = CF*DF
CNPV[:] = NPV.cumsum()
DF *= 1e6
data /= 1e6
return pd.DataFrame(data.transpose(),
index=np.arange(self._duration[0]-start, self._duration[1]),
columns=cashflow_columns)
@property
def NPV(self) -> float:
"""Net present value."""
taxable_cashflow, nontaxable_cashflow, depreciation = self._taxable_nontaxable_depreciation_cashflows()
tax = np.zeros_like(taxable_cashflow)
incentives = tax.copy()
self._fill_tax_and_incentives(incentives, taxable_cashflow, nontaxable_cashflow, tax, depreciation)
cashflow = nontaxable_cashflow + taxable_cashflow + incentives - tax
return NPV_at_IRR(self.IRR, cashflow, self._get_duration_array())
def _AOC(self, FCI):
"""Return AOC at given FCI"""
return self._FOC(FCI) + self.VOC
def _taxable_nontaxable_depreciation_cashflows(self):
"""Return taxable, nontaxable and depreciation cash flows by year as a tuple[1d array, 1d array, 1d array]."""
# Cash flow data and parameters
# C_FC: Fixed capital
# C_WC: Working capital
# Loan: Money gained from loan
# LP: Loan payment
# D: Depreciation
# C: Annual operating cost (excluding depreciation)
# S: Sales
# NE: Net earnings
# CF: Cash flow
TDC = self.TDC
FCI = self._FCI(TDC)
start = self._start
years = self._years
FOC = self._FOC(FCI)
VOC = self.VOC
D, C_FC, C_WC, Loan, LP, C, S = np.zeros((7, start + years))
self._fill_depreciation_array(D, start, years, TDC)
WC = self.WC_over_FCI * FCI
system = self.system
return (
*taxable_and_nontaxable_cashflows(
system.unit_capital_costs if isinstance(system, bst.AgileSystem) else system.cost_units,
D, C, S, C_FC, C_WC, Loan, LP,
FCI, WC, TDC, VOC, FOC, self.sales,
self._startup_time,
self.startup_VOCfrac,
self.startup_FOCfrac,
self.startup_salesfrac,
self._construction_schedule,
self.finance_interest,
self.finance_years,
self.finance_fraction,
start, years,
self.lang_factor
),
D
)
def _fill_tax_and_incentives(self, incentives, taxable_cashflow, nontaxable_cashflow, tax, depreciation):
index = taxable_cashflow > 0.
tax[index] = self.income_tax * taxable_cashflow[index]
def _net_earnings_and_nontaxable_cashflow_arrays(self):
taxable_cashflow, nontaxable_cashflow, depreciation = self._taxable_nontaxable_depreciation_cashflows()
size = taxable_cashflow.size
tax = np.zeros(size)
incentives = tax.copy()
self._fill_tax_and_incentives(incentives, taxable_cashflow, nontaxable_cashflow, tax, depreciation)
net_earnings = taxable_cashflow + incentives - tax
return net_earnings, nontaxable_cashflow
@property
def cashflow_array(self) -> NDArray[np.float64]:
"""Cash flows by year."""
return sum(self._net_earnings_and_nontaxable_cashflow_arrays())
@property
def net_earnings_array(self) -> NDArray[np.float64]:
"""Net earnings by year."""
return self._net_earnings_and_nontaxable_cashflow_arrays()[0]
def production_costs(self, products: Sequence[bst.Stream], with_annual_depreciation: Optional[bool]=True):
"""
Return production cost of products [USD/yr].
Parameters
----------
products :
Main products of the system.
with_annual_depreciation:
Whether to add annualized depreciation to the production costs.
Notes
-----
If there is more than one main product, The production cost is
proportionally allocated to each of the main products with respect to
their marketing values. The marketing value of each product is
determined by the annual production multiplied by its selling price.
"""
system = self.system
market_values = np.array([system.get_market_value(i) for i in products])
total_market_value = market_values.sum()
weights = market_values/total_market_value
return weights * self.total_production_cost(products, with_annual_depreciation)
def total_production_cost(self, products: Collection[bst.Stream], with_annual_depreciation: Optional[bool]=True):
"""
Return total production cost of products [USD/yr].
Parameters
----------
products :
Main products of the system.
with_annual_depreciation:
Whether to add annualized depreciation to the production costs.
"""
system = self.system
coproduct_sales = self.sales - sum([system.get_market_value(i) for i in products])
if with_annual_depreciation:
TDC = self.TDC
annual_depreciation = TDC/(self.duration[1]-self.duration[0])
AOC = self._AOC(self._FCI(TDC))
return AOC - coproduct_sales + annual_depreciation
else:
return self.AOC - coproduct_sales
def solve_IRR(self, financing=True):
"""Return the IRR at the break even point (NPV = 0) through cash flow analysis."""
IRR = self._IRR
if not IRR or np.isnan(IRR) or IRR < 0.: IRR = self.IRR
if not IRR or np.isnan(IRR) or IRR < 0.: IRR = 0.10
if financing:
args = (self.cashflow_array, self._get_duration_array())
IRR = flx.aitken_secant(NPV_at_IRR,
IRR, 1.0001 * IRR + 1e-3, xtol=1e-6, ytol=10.,
maxiter=200, args=args, checkiter=False)
else:
financing_values = self.finance_fraction, self.finance_interest
self.finance_fraction = self.finance_interest = None
try:
args = (self.cashflow_array, self._get_duration_array())
IRR = flx.aitken_secant(NPV_at_IRR,
IRR, 1.0001 * IRR + 1e-3, xtol=1e-6, ytol=10.,
maxiter=200, args=args, checkiter=False)
finally:
self.finance_fraction, self.finance_interest = financing_values
self._IRR = IRR
return IRR
def solve_price(self, streams: bst.Stream|Collection[bst.Stream]):
"""
Return the price [USD/kg] of a stream(s) at the break even point (NPV = 0)
through cash flow analysis.
Parameters
----------
streams :
Streams with variable selling price.
"""
if isinstance(streams, bst.Stream): streams = [streams]
system = self.system
price2cost = sum([system._price2cost(i) for i in streams])
if price2cost == 0.: raise ValueError('cannot solve price of empty streams')
try:
sales = self.solve_sales()
except:
original_prices = [i.price for i in streams]
for i in streams: i.price = 0.
sales = self.solve_sales()
current_price = 0.
for i, j in zip(streams, original_prices): i.price = j
else:
current_price = sum([system.get_market_value(i) for i in streams]) / abs(price2cost)
return current_price + sales / price2cost
def solve_sales(self):
"""
Return the required additional sales [USD] to reach the breakeven
point (NPV = 0) through cash flow analysis.
"""
discount_factors = (1 + self.IRR)**self._get_duration_array()
sales_coefficients = np.ones_like(discount_factors)
start = self._start
sales_coefficients[:start] = 0
w0 = self._startup_time
sales_coefficients[self._start] = w0*self.startup_VOCfrac + (1-w0)
sales = self._sales
taxable_cashflow, nontaxable_cashflow, depreciation = self._taxable_nontaxable_depreciation_cashflows()
if np.isnan(taxable_cashflow).any():
warn('nan encountered in cashflow array; resimulating system', category=RuntimeWarning)
self.system.simulate()
taxable_cashflow, nontaxable_cashflow, depreciation = self._taxable_nontaxable_depreciation_cashflows()
if np.isnan(taxable_cashflow).any():
raise RuntimeError('nan encountered in cashflow array')
args = (taxable_cashflow,
nontaxable_cashflow,
depreciation,
sales_coefficients,
discount_factors,
self._fill_tax_and_incentives)
x0 = sales
f = NPV_with_sales
if not np.isfinite(x0): x0 = 0.
y0 = f(x0, *args)
x1 = x0 - y0 / self._years # First estimate
try:
sales = flx.aitken_secant(f, x0, x1, xtol=10, ytol=1000.,
maxiter=1000, args=args, checkiter=True)
except:
bracket = flx.find_bracket(f, x0, x1, args=args)
sales = flx.IQ_interpolation(f, *bracket, args=args, xtol=10, ytol=1000, maxiter=1000, checkiter=False)
self._sales = sales
return sales
def __repr__(self):
return f'{type(self).__name__}({self.system.ID}, ...)'
def _info(self):
return (f'{type(self).__name__}: {self.system}\n'
f'NPV: {self.NPV:,.0f} USD at {self.IRR:.1%} IRR')
def show(self):
"""Prints information on unit."""
print(self._info())
_ipython_display_ = show