-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
164 lines (136 loc) · 6.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import pickle
import cv2
import numpy as np
import cvzone
import face_recognition
import firebase_admin
from firebase_admin import credentials
from firebase_admin import db
from firebase_admin import storage
from datetime import datetime
cred = credentials.Certificate("serviceAccountKey.json")
firebase_admin.initialize_app(cred,{
'databaseURL':"https://dutabangsaattendance-default-rtdb.asia-southeast1.firebasedatabase.app/",
'storageBucket' : "dutabangsaattendance.appspot.com"
})
bucket = storage.bucket()
# videoCapture pada (1) karena menggunakan device kamera dari luar pc (droidcam dari handphone)
cap = cv2.VideoCapture(1)
cap.set(3, 1280)
cap.set(4, 720)
imgBackground = cv2.imread('Resources/background.png')
# mengimport gambar dari modes kedalam list
folderModePath = 'Resources/Modes'
modePathList = os.listdir(folderModePath)
imgModeList = []
for path in modePathList:
imgModeList.append(cv2.imread(os.path.join(folderModePath,path)))
# print(len(imgModeList))
# Load file encoding
print("Loading Encode File...")
file = open("EncodeFile.p", "rb")
encodeListKnownWithIds = pickle.load(file)
file.close()
encodeListKnown, mahasiswaIds = encodeListKnownWithIds
print("Encode File Loaded...")
# setting tipe interface mode
modeType = 0
counter = 0
id = -1
imgMahasiswa = []
while True:
success, ori_img = cap.read()
width = 640
height = 480
dim = (width, height)
img = cv2.resize(ori_img,dim)
imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
faceCurFrame = face_recognition.face_locations(imgS)
encodeCurFrame = face_recognition.face_encodings(imgS, faceCurFrame)
imgBackground[162:162+480, 55:55+640] = img
imgBackground[44:44 + 633, 808:808 + 414] = imgModeList[modeType]
if faceCurFrame:
for encodeFace, faceLoc in zip(encodeCurFrame, faceCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
# print("matches", matches)
# print("jarak", faceDis)
matchIndex = np.argmin(faceDis)
# print("Match index", matchIndex)
if matches[matchIndex]:
# print("wajah yang dikenal terdeteksi")
# print (mahasiswaIds[matchIndex])
y1, x2, y2, x1 = faceLoc
# dikalikan 4 karena imgS meresize img 1/4
y1, x2, y2, x1 = y1*4, x2*4, y2*4, x1*4
bbox = 55+x1, 162+y1, x2-x1, y2 - y1
imgBackground = cvzone.cornerRect(imgBackground, bbox, rt=0)
#cek counter
id = mahasiswaIds[matchIndex]
if counter == 0:
cvzone.putTextRect(imgBackground, "Loading", (275, 400))
cv2.imshow('tampilan face attendance', imgBackground)
cv2.waitKey(1)
counter = 1
modeType = 1
if counter != 0:
if counter ==1:
#Get Data
mahasiswaInfo = db.reference(f'Mahasiswa/{id}').get()
print(mahasiswaInfo)
#Get image dari storage
blob = bucket.get_blob(f'Images/{id}.png')
array = np.frombuffer(blob.download_as_string(), np.uint8)
imgMahasiswa = cv2.imdecode(array, cv2.COLOR_BGRA2BGR)
# Update data of attendance
datetimeObject = datetime.strptime(mahasiswaInfo['last_attendance_time'],
"%Y-%m-%d %H:%M:%S")
secondsElapsed = (datetime.now() - datetimeObject).total_seconds()
print(secondsElapsed)
# batasi untuk 30 detik
if secondsElapsed >30:
ref = db.reference(f'Mahasiswa/{id}')
mahasiswaInfo['total_attendance'] += 1
ref.child('total_attendance').set(mahasiswaInfo['total_attendance'])
ref.child('last_attendance_time').set(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
else:
modeType = 3
counter = 0
imgBackground[44:44 + 633, 808:808 + 414] = imgModeList[modeType]
if modeType != 3:
if 10 < counter < 20:
modeType = 2
imgBackground[44:44 + 633, 808:808 + 414] = imgModeList[modeType]
if counter <=10:
cv2.putText(imgBackground, str(mahasiswaInfo['total_attendance']), (861, 125),
cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 1)
cv2.putText(imgBackground, str(mahasiswaInfo['jurusan']), (1006, 550),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(imgBackground, str(id), (1006, 493),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(imgBackground, str(mahasiswaInfo['status']), (910, 625),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
cv2.putText(imgBackground, str(mahasiswaInfo['tahun']), (1025, 625),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
cv2.putText(imgBackground, str(mahasiswaInfo['angkatan']), (1125, 625),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
(w, h), _ = cv2.getTextSize(mahasiswaInfo['nama'], cv2.FONT_HERSHEY_COMPLEX, 1, 1)
offset = (414 - w) // 2
cv2.putText(imgBackground, str(mahasiswaInfo['nama']), (808 + offset, 445),
cv2.FONT_HERSHEY_COMPLEX, 1, (50, 50, 50), 1)
imgBackground[175:175+216, 909:909+216] = imgMahasiswa
counter +=1
if counter >= 20:
counter = 0
modeType = 0
mahasiswaInfo = []
imgMahasiswa = []
imgBackground[44:44 + 633, 808:808 + 414] = imgModeList[modeType]
else:
modeType = 0
counter = 0
# cv2.imshow('webcam', img)
cv2.imshow('tampilan face attendance', imgBackground)
cv2.waitKey(1)