-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_vis.py
122 lines (94 loc) · 3.51 KB
/
test_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse
#from utilities import text_helper
import cv2
from PIL import Image
import numpy as np
import torch
import torch.nn as nn
import torchvision
import torch.optim as optim
from torch.optim import lr_scheduler
from data_loader import get_loader
from models import VqaModel, SANModel
import warnings
import gc
warnings.filterwarnings("ignore")
#from resize_images import resize_image
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def load_str_list(fname):
with open(fname) as f:
lines = f.readlines()
lines = [l.strip() for l in lines]
return lines
qst_vocab = load_str_list("datasets/vocab_questions.txt")
ans_vocab = load_str_list("datasets/vocab_answers.txt")
word2idx_dict = {w:n_w for n_w, w in enumerate(qst_vocab)}
unk2idx = word2idx_dict['<unk>'] if '<unk>' in word2idx_dict else None
vocab_size = len(qst_vocab)
def load_image(image_path, transform=None):
image = Image.open(image_path).convert('RGB')
image = image.resize([224, 224], Image.LANCZOS)
if transform is not None:
image = transform(image).unsqueeze(0)
return image
def visualizeAttention(model, img, layer):
m = nn.Upsample(size=(224,224), mode='bilinear')
pi = model.attn_features[layer].squeeze()
print(pi.size())
pi = pi.view(14,14)
attn = m(pi)
image = image.squeeze(0)
img = torch.numpy(img)
attn = torch.numpy(attn)
# print(image.shape, attn.shape)
## Visualization yet to be completed
def word2idx(w):
if w in word2idx_dict:
return word2idx_dict[w]
elif unk2idx is not None:
return unk2idx
else:
raise ValueError('word %s not in dictionary (while dictionary does not contain <unk>)' % w)
def main(args):
image = cv2.imread(args.image_path)
image = cv2.resize(image, dsize=(224,224), interpolation = cv2.INTER_AREA)
image = torch.from_numpy(image).float()
image = image.to(device)
image = image.unsqueeze(dim=0)
image = image.view(1,3,224,224)
max_qst_length=30
question = args.question
q_list = list(question.split(" "))
# print(q_list)
idx = 'valid'
qst2idc = np.array([word2idx('<pad>')] * max_qst_length) # padded with '<pad>' in 'ans_vocab'
qst2idc[:len(q_list)] = [word2idx(w) for w in q_list]
question = qst2idc
question = torch.from_numpy(question).long()
question = question.to(device)
question = question.unsqueeze(dim=0)
model = torch.load(args.saved_model)
model = model.to(device)
#torch.cuda.empty_cache()
model.eval()
output = model(image, question)
# Visualization yet to be implemented
# if model.__class__.__name__ == "SANModel":
# print(model.attn_features[0].size())
# visualizeAttention(model, image, layer=0)
predicts = torch.softmax(output, 1)
probs, indices = torch.topk(predicts, k=5, dim=1)
probs = probs.squeeze()
indices = indices.squeeze()
print("predicted - probabilty")
for i in range(5):
# print(probs.size(), indices.size())
# print(ans_vocab[indices[1].item()],probs[1].item())
print("'{}' - {:.4f}".format(ans_vocab[indices[i].item()], probs[i].item()))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image_path', type = str, required=True)
parser.add_argument('--question', type = str, required=True)
parser.add_argument('--saved_model', type = str, required=True)
args = parser.parse_args()
main(args)