forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquantize.py
127 lines (102 loc) · 4.19 KB
/
quantize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python3
"""Script to execute the "quantize" script on a given set of models."""
import subprocess
import argparse
import glob
import sys
import os
def main():
"""Update the quantize binary name depending on the platform and parse
the command line arguments and execute the script.
"""
if "linux" in sys.platform or "darwin" in sys.platform:
quantize_script_binary = "quantize"
elif "win32" in sys.platform or "cygwin" in sys.platform:
quantize_script_binary = "quantize.exe"
else:
print("WARNING: Unknown platform. Assuming a UNIX-like OS.\n")
quantize_script_binary = "quantize"
parser = argparse.ArgumentParser(
prog='python3 quantize.py',
description='This script quantizes the given models by applying the '
f'"{quantize_script_binary}" script on them.'
)
parser.add_argument(
'models', nargs='+', choices=('7B', '13B', '30B', '65B'),
help='The models to quantize.'
)
parser.add_argument(
'-r', '--remove-16', action='store_true', dest='remove_f16',
help='Remove the f16 model after quantizing it.'
)
parser.add_argument(
'-m', '--models-path', dest='models_path',
default=os.path.join(os.getcwd(), "models"),
help='Specify the directory where the models are located.'
)
parser.add_argument(
'-q', '--quantize-script-path', dest='quantize_script_path',
default=os.path.join(os.getcwd(), quantize_script_binary),
help='Specify the path to the "quantize" script.'
)
# TODO: Revise this code
# parser.add_argument(
# '-t', '--threads', dest='threads', type='int',
# default=os.cpu_count(),
# help='Specify the number of threads to use to quantize many models at '
# 'once. Defaults to os.cpu_count().'
# )
args = parser.parse_args()
args.models_path = os.path.abspath(args.models_path)
if not os.path.isfile(args.quantize_script_path):
print(
f'The "{quantize_script_binary}" script was not found in the '
"current location.\nIf you want to use it from another location, "
"set the --quantize-script-path argument from the command line."
)
sys.exit(1)
for model in args.models:
# The model is separated in various parts
# (ggml-model-f16.bin, ggml-model-f16.bin.0, ggml-model-f16.bin.1...)
f16_model_path_base = os.path.join(
args.models_path, model, "ggml-model-f16.bin"
)
f16_model_parts_paths = map(
lambda filename: os.path.join(f16_model_path_base, filename),
glob.glob(f"{f16_model_path_base}*")
)
for f16_model_part_path in f16_model_parts_paths:
if not os.path.isfile(f16_model_part_path):
print(
f"The f16 model {os.path.basename(f16_model_part_path)} "
f"was not found in {args.models_path}{os.path.sep}{model}"
". If you want to use it from another location, set the "
"--models-path argument from the command line."
)
sys.exit(1)
__run_quantize_script(
args.quantize_script_path, f16_model_part_path
)
if args.remove_f16:
os.remove(f16_model_part_path)
# This was extracted to a top-level function for parallelization, if
# implemented. See https://github.com/ggerganov/llama.cpp/pull/222/commits/f8db3d6cd91bf1a1342db9d29e3092bc12dd783c#r1140496406
def __run_quantize_script(script_path, f16_model_part_path):
"""Run the quantize script specifying the path to it and the path to the
f16 model to quantize.
"""
new_quantized_model_path = f16_model_part_path.replace("f16", "q4_0")
subprocess.run(
[script_path, f16_model_part_path, new_quantized_model_path, "2"],
check=True
)
if __name__ == "__main__":
try:
main()
except subprocess.CalledProcessError:
print("\nAn error ocurred while trying to quantize the models.")
sys.exit(1)
except KeyboardInterrupt:
sys.exit(0)
else:
print("\nSuccesfully quantized all models.")