-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathpars_microbe.m
82 lines (69 loc) · 2.91 KB
/
pars_microbe.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
%% parameters for 'microbe'
%% they are expressed on molar basis; this is convenient for balances,
%% not all parameters are required for any particular application
global T T_1 Tpars TC;
global n_O n_M n w_O d_O m_Em mu_T mu_O mu_M eta_O;
global jT_X_Am j_E_M j_E_J K y_E_X y_X_E y_V_E y_E_V kap;
global m_Em g kT_M kT_J kT_E hT_a l_d f;
global h h_X h_V h_P h_m r_m X_r zeta eta_O;
%% temperature parameters (in Kelvin)
%% these pars are not relevant if T = T_1
T = 293; % K, actual body temperature
T_1 = 293; % K, temp for which rate pars are given
T_A = 12000; % K, Arrhenius temp
T_L = 277; % K, lower boundary tolerance range
T_H = 318; % K, upper boundary tolerance range
T_AL = 20000; % K, Arrhenius temp for lower boundary
T_AH =190000; % K, Arrhenius temp for upper boundary
Tpars=[T_A T_L T_H T_AL T_AH];
%% chemical indices (relative elemental frequencies)
%% organic compounds
%% columns: substrate X, structure V, reserve E, product P
%% X V E P
n_O = [1.00, 1.00, 1.00, 1.00; % C/C, equals 1 by definition
2.00, 1.80, 1.80, 1.80; % H/C
1.00, 0.50, 0.50, 1.00; % O/C
0.00, 0.15, 0.20, 0.00]; % N/C
%% minerals
%% rows: elements carbon, hydrogen, oxygen, nitrogen
%% columns: carbon dioxide, water, dioxygen, ammonia
%% C H O N
n_M = [1, 0, 0, 0; % C
0, 2, 0, 3; % H
2, 1, 2, 0; % O
0, 0, 0, 1]; % N
%% calorimetric parameters
mu_M = [0 0 0 0]; % kJ/mol, chemical potentials of minerals
mu_T = [ 60 0 -350 -590]; % kJ/mol, heat couplers to mineral fluxes
%% life stage parameter
M_Vd = 0.005; % mol, structural mass at division
%% feeding parameters
j_X_Am = 0.55; % mol/mol.d, max mass-spec uptake of substrate
K = 0.00001; % M, half-saturation concentration
%% yield coefficients
y_E_X = 0.3; % mol/mol, from food to reserve
y_X_E = 1/y_E_X;
y_V_E = 0.85; % mol/mol, from reserve to structure
y_E_V = 1/y_V_E;
%% partitioning parameter: dimensionless fraction
kap = 0.9; % -, fraction of catabolic flux allocated to soma
% the remaining fraction is allocated to development
%% reserve parameter
k_E = 0.45; % 1/d, reserve turnover rate
%% specific maintenancs costs in terms of reserve fluxes
%% these costs are paid to maintain structural mass
k_M = 0.005; % 1/d, spec somatic maint coeff
%% aging process
h_a = 0.01; % 1/d, aging rate
%% product formation
zeta = [.05 .20 0]; % mol/mol, coupling to assim, dissipation, growth
%% control parameters
%% If h = h_X = h_V = h_P: chemostat throughput rate
%% If h_X = h_V = h_P = 0: fed-batch culture
%% If h = h_X = h_V = h_P = 0: batch culture
X_r = 0.001; % M, substrate concentration in feed
h = .1; % 1/d, spec supply rate
h_X = .1; % 1/d, spec drain rate for substrate
h_V = .1; % 1/d, spec drain rate for structure
h_P = .1; % 1/d, spec drain rate for product
parscomp_microbe;