Skip to content

CMake project that builds and installs TensorFlow C++ library.

License

Notifications You must be signed in to change notification settings

achalshah20/tensorflow_cc

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tensorflow_cc

Build Status TF version

This repository makes possible the usage of the TensorFlow C++ API from the outside of the TensorFlow source code folders and without the use of the Bazel build system.

This repository contains two CMake projects. The tensorflow_cc project downloads, builds and installs the TensorFlow C++ API into the operating system and the example project demonstrates its simple usage.

Docker

If you wish to start using this project right away, fetch a prebuilt image on Docker Hub!

Running the image on CPU:

docker run -it floopcz/tensorflow_cc:ubuntu-shared /bin/bash

If you also want to utilize your NVIDIA GPU, install NVIDIA Docker and run:

docker run --runtime=nvidia -it floopcz/tensorflow_cc:ubuntu-shared-cuda /bin/bash

The list of available images:

Image name Description
floopcz/tensorflow_cc:ubuntu-static Ubuntu + static build of tensorflow_cc
floopcz/tensorflow_cc:ubuntu-shared Ubuntu + shared build of tensorflow_cc
floopcz/tensorflow_cc:ubuntu-shared-cuda Ubuntu + shared build of tensorflow_cc + NVIDIA CUDA
floopcz/tensorflow_cc:archlinux-shared Arch Linux + shared build of tensorflow_cc
floopcz/tensorflow_cc:archlinux-shared-cuda Arch Linux + shared build of tensorflow_cc + NVIDIA CUDA

To build one of the images yourself, e.g. ubuntu-shared, run:

docker build -t floopcz/tensorflow_cc:ubuntu-shared -f Dockerfiles/ubuntu-shared .

Installation

1) Install requirements

Ubuntu 18.04:
sudo apt-get install build-essential curl git cmake unzip autoconf autogen automake libtool mlocate \
                     zlib1g-dev g++-7 python python3-numpy python3-dev python3-pip python3-wheel wget
sudo updatedb

If you require GPU support on Ubuntu, please also install Bazel, NVIDIA CUDA Toolkit (>=9.2), NVIDIA drivers, cuDNN, and cuda-command-line-tools package. The tensorflow build script will automatically detect CUDA if it is installed in /opt/cuda or /usr/local/cuda directories.

Arch Linux:
sudo pacman -S base-devel cmake git unzip mlocate python python-numpy wget
sudo updatedb

For GPU support on Arch, also install the following:

sudo pacman -S gcc7 bazel cuda cudnn nvidia

Warning: Newer versions of TensorFlow sometimes fail to build with the latest version of Bazel. You may wish to install an older version of Bazel (e.g., 0.16.1).

2) Clone this repository

git clone https://github.com/FloopCZ/tensorflow_cc.git
cd tensorflow_cc

3) Build and install the library

There are two possible ways to build the TensorFlow C++ library:

  1. As a static library (default):
    • Faster to build.
    • Provides only basic functionality, just enough for inferring using an existing network (see contrib/makefile).
    • No GPU support.
  2. As a shared library:
    • Requires Bazel.
    • Slower to build.
    • Provides the full TensorFlow C++ API.
    • GPU support.
cd tensorflow_cc
mkdir build && cd build
# for static library only:
cmake ..
# for shared library only (requires Bazel):
# cmake -DTENSORFLOW_STATIC=OFF -DTENSORFLOW_SHARED=ON ..
make && sudo make install

Warning: Optimizations for Intel CPU generation >=ivybridge are enabled by default. If you have a processor that is older than ivybridge generation, you may wish to run export CC_OPT_FLAGS="-march=native" before the build. This command provides the best possible optimizations for your current CPU generation, but it may cause the built library to be incompatible with older generations.

4) (Optional) Free disk space

# cleanup bazel build directory
rm -rf ~/.cache
# remove the build folder
cd .. && rm -rf build

Usage

1) Write your C++ code:

// example.cpp

#include <tensorflow/core/platform/env.h>
#include <tensorflow/core/public/session.h>
#include <iostream>
using namespace std;
using namespace tensorflow;

int main()
{
    Session* session;
    Status status = NewSession(SessionOptions(), &session);
    if (!status.ok()) {
        cout << status.ToString() << "\n";
        return 1;
    }
    cout << "Session successfully created.\n";
}

2) Link TensorflowCC to your program using CMake

# CMakeLists.txt

find_package(TensorflowCC REQUIRED)
add_executable(example example.cpp)

# Link the static Tensorflow library.
target_link_libraries(example TensorflowCC::Static)

# Altenatively, link the shared Tensorflow library.
# target_link_libraries(example TensorflowCC::Shared)

# For shared library setting, you may also link cuda if it is available.
# find_package(CUDA)
# if(CUDA_FOUND)
#   target_link_libraries(example ${CUDA_LIBRARIES})
# endif()

3) Build and run your program

mkdir build && cd build
cmake .. && make
./example 

If you are still unsure, consult the Dockerfiles for Ubuntu and Arch Linux.

About

CMake project that builds and installs TensorFlow C++ library.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • CMake 57.4%
  • Shell 40.8%
  • C++ 1.8%