-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans.py
32 lines (25 loc) · 897 Bytes
/
kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# -*- coding: utf-8 -*-
import csv
import numpy as np
import matplotlib.pyplot as plt
def kMeans(X, K, maxIters):
centroids = X[np.random.choice(np.arange(len(X)), K), :]
for i in range(maxIters):
C = np.array([np.argmin([np.dot(x_i-y_k, x_i-y_k) for y_k in centroids]) for x_i in X])
centroids = [X[C == k].mean(axis = 0) for k in range(K)]
return np.array(centroids) , C
def main():
reader=csv.reader(open("iristwod.csv","rt"),delimiter=',')
x=list(reader)
data = []
data = np.array(x).astype('float')
centroids, C = kMeans(data, K = 3, maxIters=10)
print (centroids)
print (C)
#plt.plot(centroids,)
print (data.size)
markers= ['s','o','x']
colors = ['red','blue','g']
for i in range (int(data.size/2)):
plt.scatter(data[i,0], data[i,1],c=colors[C[i]], alpha=0.8, marker=markers[C[i]])
main()