-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodels.py
379 lines (286 loc) · 13.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import string
import warnings
import numpy as np
import tensorflow as tf
# attempt to import movidius V1 api, won't work in conda environment
try:
from mvnc import mvncapi as mvnc
mvnc.SetGlobalOption(mvnc.GlobalOption.LOG_LEVEL, 2)
devices = mvnc.EnumerateDevices()
if len(devices) == 0:
print('No devices found')
quit()
device = mvnc.Device(devices[0])
device.OpenDevice()
except ImportError:
warnings.warn('NCS API not installed', UserWarning)
# attempt to import movidius V2 api, might work in conda environment
try:
from openvino.inference_engine import IENetwork, IEPlugin
model_bin = './checkpoints/movidius.bin'
model_xml = './checkpoints/movidius.xml'
plugin = IEPlugin(device='MYRIAD')
network = IENetwork(model=model_xml, weights=model_bin)
exec_net = plugin.load(network=network)
input_blob = next(iter(network.inputs))
output_blob = next(iter(network.outputs))
except ImportError:
warnings.warn('NCS OpenVino API not installed', UserWarning)
# attempt to import edgetpu api, only works when ssh'd into coral dev board
try:
from edgetpu.basic.basic_engine import BasicEngine
model_path = './checkpoints/movidius_edgetpu.tflite'
tpu_engine = BasicEngine(model_path)
except ImportError:
warnings.warn('EdgeTPU API not installed', UserWarning)
class BaseModel(object):
"""Base class with utilities used by all benchmarked speech models"""
def __init__(self):
char_list = string.ascii_lowercase + '\' -'
# for mapping between int IDs and characters
self.char_to_id = {c: i for i, c in enumerate(char_list)}
self.id_to_char = {i: c for i, c in enumerate(char_list)}
self.n_chars = len(char_list)
@staticmethod
def merge(chars):
'''Merge repeated characters and strip blank CTC symbol'''
acc = ['-']
for c in chars:
if c != acc[-1]:
acc.append(c)
acc = [c for c in acc if c != '-']
return ''.join(acc)
def predict_text(self, inputs):
'''Dummy predictor getting baseline consumption values'''
return None
class TensorflowModel(BaseModel):
"""An inference-only version of speech model for doing power consumption
benchmarks on different kinds of hardware (Movidius, Jetson, CPU, GPU).
Parameters:
-----------
n_inputs : int
The dimensionality of the input to the model.
n_layers : int
The number of feedforward layers in the model.
n_per_layer : int
The dimensionality of each hidden layer in the model.
"""
def __init__(self, n_inputs, n_layers=2, n_per_layer=256):
self.n_inputs = n_inputs
self.n_layers = n_layers
self.n_per_layer = n_per_layer
self.graph = tf.Graph()
self.built = False
# set this for initializing randomly parameterized inference models
self.initializer = tf.random_uniform_initializer(-0.05, 0.05)
super().__init__()
def start_session(self):
'''Start a session instance for doing inference'''
if self.built:
with self.graph.as_default():
self.sess = tf.Session(config=self.config)
self.sess.run(tf.global_variables_initializer())
self.saver = tf.train.Saver()
else:
raise RuntimeError("No graph exists to start a session with!")
def build_branch(self, inputs, branch_scope):
'''Build a single branch from placeholder to output'''
with tf.variable_scope(branch_scope):
# create seperate variable scope for each layer
scopes = ['char_layer_' + str(n) for n in range(self.n_layers)]
x = inputs
for i, scope in enumerate(scopes):
size_in = self.n_inputs if i < 1 else self.n_per_layer
size_out = self.n_per_layer
with tf.variable_scope(scope):
w = tf.get_variable('weights', shape=[size_in, size_out],
initializer=self.initializer)
b = tf.get_variable('biases', shape=[size_out],
initializer=self.initializer)
x = tf.nn.relu(tf.nn.xw_plus_b(x, w, b))
# create variable scope for output layer
with tf.variable_scope('char_output'):
w = tf.get_variable('weights', shape=[size_in, self.n_chars],
initializer=self.initializer)
b = tf.get_variable('biases', shape=[self.n_chars],
initializer=self.initializer)
outputs = tf.nn.xw_plus_b(x, w, b, name='outputs')
return outputs
def build(self, with_gpu=False, n_copies=1):
'''Build inference-only graph for benchmarking power consumption'''
with self.graph.as_default():
self.inputs = tf.placeholder(
tf.float32, [1, self.n_inputs], name='inputs')
self.copy_scopes = ['copy_' + str(c) for c in range(n_copies)]
copy_output = []
# make n_copies of the inference graph to feed from placeholder
# (this is to load-test movidius, which doesn't allow batching)
for scope in self.copy_scopes:
output = self.build_branch(self.inputs, scope)
copy_output.append(output)
# sum outputs or take first output (copies just for load testing)
# (we don't use this kind of copying in the paper, since we can't
# replicate the required architecture on Loihi)
if n_copies > 1:
# add outputs to ensure all copies are executed
self.outputs = tf.add_n(copy_output)
else:
self.outputs = copy_output[0]
# set gpu config for starting session using proper hardware
if with_gpu:
config = tf.ConfigProto(log_device_placement=True)
config.gpu_options.per_process_gpu_memory_fraction = 0.1
self.config = config
print('Set memory allocation limit')
else:
self.config = tf.ConfigProto(
log_device_placement=True, device_count={'GPU': 0})
# flag that the model has been built, so session can be made
self.built = True
def set_weights(self, weight_dict):
'''Assign previously trained parameters to the model variables'''
with self.graph.as_default():
# need to repeat weight setting for all copies of graph
for var in tf.trainable_variables():
var_name = '/'.join(var.op.name.split('/')[1:])
val = weight_dict[var_name]
self.sess.run(var.assign(val))
print('Number of var assignments: %d'
% len(tf.trainable_variables()))
def set_tensorboard_summary(self, logdir):
'''Write a tensorboard summary to file for inspecting the graph'''
writer = tf.summary.FileWriter(logdir, graph=self.graph)
writer.flush()
print('Wrote graph definition to %s!' % logdir)
def predict_text(self, inputs):
'''Feed data through the inference graph to predict text'''
with self.graph.as_default():
feed_dict = {self.inputs: inputs}
outputs = self.sess.run(self.outputs, feed_dict=feed_dict)
ids = np.argmax(outputs, axis=1)
text = ''.join(self.id_to_char[i] for i in ids)
return text
def save(self, checkpoint):
'''Save checkpoint files for inference model'''
if self.sess is None:
raise RuntimeError('No inf session object exists to save!')
else:
with self.graph.as_default():
self.saver.save(self.sess, checkpoint)
class ScaledModel(TensorflowModel):
"""A model that scales the same way as scaling occurs on Loihi, for
benchmarking differences in power consumption with changes in compute
load under constant I/O"""
def __init__(self, n_inputs, n_copies, n_layers, n_per_layer=256):
super().__init__(n_inputs)
self.n_inputs = n_inputs
self.n_copies = n_copies
self.n_layers = n_layers
self.n_per_layer = n_per_layer
self.graph = tf.Graph()
self.built = False
def build_layer(self, inputs, scope, from_input=False):
'''Build a single branch from placeholder to output'''
# create seperate variable scope for each layer
size_in = self.n_inputs if from_input else self.n_per_layer
size_out = self.n_per_layer
with tf.variable_scope(scope):
w = tf.get_variable(
'weights', shape=[size_in, size_out],
initializer=self.initializer)
b = tf.get_variable(
'biases', shape=[size_out],
initializer=tf.zeros_initializer())
outputs = tf.nn.relu(tf.nn.xw_plus_b(inputs, w, b))
return outputs
def build(self, with_gpu=False):
'''Build with internal scaling of copies, layer depth'''
with self.graph.as_default():
self.inputs = tf.placeholder(
tf.float32, [None, self.n_inputs], name='inputs')
inp_layer = self.build_layer(
self.inputs, scope='inp_layer', from_input=True)
copy_scopes = ['copy_' + str(c) for c in range(self.n_copies)]
layer_scopes = ['layer_' + str(n) for n in range(self.n_layers)]
copy_outputs = []
# build out over layers and copies
for copy_scope in copy_scopes:
current = inp_layer
for layer_scope in layer_scopes:
scope = copy_scope + '/' + layer_scope
copy_output = self.build_layer(current, scope)
current = copy_output
copy_outputs.append(copy_output)
# project down to single output layer
with tf.variable_scope('out_layer'):
nx = self.n_copies if self.n_copies != 0 else 1
w = tf.get_variable(
'weights',
shape=[self.n_per_layer * nx, self.n_per_layer],
initializer=self.initializer)
b = tf.get_variable(
'biases', shape=[self.n_per_layer],
initializer=tf.zeros_initializer())
# handles special case with no internal scaling
# (equivalent to original spotter architecture)
if self.n_copies == 0 and self.n_layers == 0:
activities = inp_layer
else:
activities = tf.concat(copy_outputs, axis=1)
out_layer = tf.nn.relu(
tf.nn.xw_plus_b(activities, w, b))
# create variable scope for output layer
with tf.variable_scope('char_output'):
w = tf.get_variable(
'weights', shape=[self.n_per_layer, self.n_chars],
initializer=self.initializer)
b = tf.get_variable(
'biases', shape=[self.n_chars],
initializer=tf.zeros_initializer())
self.outputs = tf.nn.xw_plus_b(out_layer, w, b, name='outputs')
# set gpu config for starting session using proper hardware
if with_gpu:
config = tf.ConfigProto(log_device_placement=True)
config.gpu_options.per_process_gpu_memory_fraction = 0.1
self.config = config
print('Set memory allocation limit')
else:
self.config = tf.ConfigProto(
log_device_placement=True, device_count={'GPU': 0})
# flag that the model has been built, so session can be made
self.built = True
class MovidiusModel(BaseModel):
"""An inference-only version of speech model running on Movidius NCS"""
def load_graph(self, filename):
'''Load a previosly compiled graph to run on the NCS'''
with open(filename, mode='rb') as graph_file:
graph = graph_file.read()
self.model = device.AllocateGraph(graph)
def predict_text(self, features):
'''Predict a single character from a feature input window'''
self.model.LoadTensor(features.astype(np.float16), 'user object')
outputs, userobj = self.model.GetResult()
idx = np.argmax(outputs)
return self.id_to_char[idx]
def close_graph(self):
'''Shut everything down on the NCS'''
self.model.DeallocateGraph()
device.CloseDevice()
class MovidiusModelV2(BaseModel):
"""An inference-only version of speech model running on Movidius NCS 2"""
def predict_text(self, features):
'''Predict a single character from a feature input window'''
result = exec_net.infer(inputs={input_blob: features})
outputs = result[output_blob]
idx = np.argmax(outputs)
return self.id_to_char[idx]
def close_graph(self):
'''Shut everything down on the NCS 2'''
pass # dummy method, avoids change to experiment script
class TPUModel(BaseModel):
"""An inference-only version of speech model running on Coral Edge TPU"""
def predict_text(self, features):
'''Predict a single character from a feature input window'''
_, res = tpu_engine.RunInference(np.squeeze(features).astype(np.uint8))
idx = np.argmax(res)
return self.id_to_char[idx]