|
4 | 4 | "cell_type": "markdown", |
5 | 5 | "metadata": {}, |
6 | 6 | "source": [ |
7 | | - "# How DeepLabV3 Works" |
| 7 | + "## How DeepLabV3 Works" |
8 | 8 | ] |
9 | 9 | }, |
10 | 10 | { |
11 | 11 | "cell_type": "markdown", |
12 | 12 | "metadata": {}, |
13 | 13 | "source": [ |
14 | | - "## Introduction" |
| 14 | + "### Introduction" |
15 | 15 | ] |
16 | 16 | }, |
17 | 17 | { |
|
83 | 83 | "cell_type": "markdown", |
84 | 84 | "metadata": {}, |
85 | 85 | "source": [ |
86 | | - "## Atrous Convoltion (Dilated Convolution)" |
| 86 | + "### Atrous Convoltion (Dilated Convolution)" |
87 | 87 | ] |
88 | 88 | }, |
89 | 89 | { |
|
145 | 145 | "cell_type": "markdown", |
146 | 146 | "metadata": {}, |
147 | 147 | "source": [ |
148 | | - "## Atrous Spatial Pyramid Pooling (ASPP)" |
| 148 | + "### Atrous Spatial Pyramid Pooling (ASPP)" |
149 | 149 | ] |
150 | 150 | }, |
151 | 151 | { |
|
159 | 159 | "cell_type": "markdown", |
160 | 160 | "metadata": {}, |
161 | 161 | "source": [ |
162 | | - "### References:" |
| 162 | + "### PointRend Enhancement\n", |
| 163 | + "\n", |
| 164 | + "Segmentation models can tend to over-smoothen boundaries which might not be precise for objects or scenes with irregular boundaries. To get a crisp segmentation boundary, a point-based rendering neural network module called [**PointRend**](https://arxiv.org/abs/1912.08193) has been added as an enhancement to the existing model. This module draws methodology from classical computer graphics and gives the perspective of rendering to a segmentation problem. An iterative subdivision algorithm at selected locations is used to make point-based segmentation predictions. This method enables high-resolution output in an efficient way. [8]" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "markdown", |
| 169 | + "metadata": {}, |
| 170 | + "source": [ |
| 171 | + "<center><img src=\"../../static/img/pointrend_deeplabv3.jpg\"/></center>\n", |
| 172 | + "<center>Figure 4. PointRend enhancement (right) over original segmentation model (left) [8]</center>" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "markdown", |
| 177 | + "metadata": {}, |
| 178 | + "source": [ |
| 179 | + "To enable PointRend with DeepLabV3, initialize the model with parameter `pointrend=True`:\n", |
| 180 | + "```\n", |
| 181 | + "model = DeepLab(data=data, pointrend=True)\n", |
| 182 | + "```" |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | + "cell_type": "markdown", |
| 187 | + "metadata": {}, |
| 188 | + "source": [ |
| 189 | + "## References:" |
163 | 190 | ] |
164 | 191 | }, |
165 | 192 | { |
|
183 | 210 | "[6] Sik-Ho Tsang, Review: DeepLabv3 — Atrous Convolution (Semantic Segmentation), https://towardsdatascience.com/review-deeplabv3-atrous-convolution-semantic-segmentation-6d818bfd1d74, Accessed 21 Februrary 2020\n", |
184 | 211 | "\n", |
185 | 212 | "\n", |
186 | | - "[7] Saurabh Pal, Semantic Segmentation: Introduction to the Deep Learning Technique Behind Google Pixel’s Camera!, https://www.analyticsvidhya.com/blog/2019/02/tutorial-semantic-segmentation-google-deeplab/, Accessed 21 February 2020\n" |
| 213 | + "[7] Saurabh Pal, Semantic Segmentation: Introduction to the Deep Learning Technique Behind Google Pixel’s Camera!, https://www.analyticsvidhya.com/blog/2019/02/tutorial-semantic-segmentation-google-deeplab/, Accessed 21 February 2020\n", |
| 214 | + "\n", |
| 215 | + "[8] Alexander Kirillov, Yuxin Wu, Kaiming He, Ross Girshick: “PointRend: Image Segmentation as Rendering”, 2019; [http://arxiv.org/abs/1912.08193 arXiv:1912.08193].\n" |
187 | 216 | ] |
| 217 | + }, |
| 218 | + { |
| 219 | + "cell_type": "code", |
| 220 | + "execution_count": null, |
| 221 | + "metadata": {}, |
| 222 | + "outputs": [], |
| 223 | + "source": [] |
188 | 224 | } |
189 | 225 | ], |
190 | 226 | "metadata": { |
|
203 | 239 | "name": "python", |
204 | 240 | "nbconvert_exporter": "python", |
205 | 241 | "pygments_lexer": "ipython3", |
206 | | - "version": "3.6.9" |
| 242 | + "version": "3.7.9" |
207 | 243 | } |
208 | 244 | }, |
209 | 245 | "nbformat": 4, |
|
0 commit comments