You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This puts the `:class` column into a vector `yIris`, and all remaining columns into a table `XIris`.
179
+
"""
175
180
176
181
# ╔═╡ f35ad4f4-2f4b-4a05-a9b5-48d93ef82b89
177
182
scitype(yIris)
@@ -200,7 +205,7 @@ If you already have an idea about the name of the model, you could search by str
200
205
"""
201
206
202
207
# ╔═╡ aa58b3e3-bdda-433a-9c3d-3b151b04c0c3
203
-
some_models =models("LinearRegressor")# sic
208
+
some_models =models("LinearRegressor")
204
209
205
210
# ╔═╡ d31909f8-f5f1-4773-8a29-32f11452654a
206
211
md"Each entry contains metadata for a model whose defining code is not yet loaded:"
@@ -457,7 +462,7 @@ info(model).prediction_type
457
462
md"""
458
463
**Important**:
459
464
- In MLJ, a model that can predict probabilities (and not just point values) will do so by default.
460
-
- For most probabilistic predictors, the predicted object is a `Distributions.Distribution` object, supporting the `Distributions.jl` [API](https://juliastats.org/Distributions.jl/latest/extends/#Create-a-Distribution-1) for such objects. In particular, the methods `rand`, `pdf`, `logpdf`, `mode`, `median` and `mean` will apply, where appropriate.
465
+
- For most probabilistic predictors, the predicted object is a `Distributions.Distribution` object (supporting the `Distributions.jl` [API](https://juliastats.org/Distributions.jl/latest/extends/#Create-a-Distribution-1)) or a `CategoricalDistributions.UnivariateFinite` object (the case here), which all support the follwing methods: `rand`, `pdf`, `logpdf`; and, where appropriate: `mode`, `median` and `mean`.
461
466
"""
462
467
463
468
# ╔═╡ 9653dbb8-a168-4a07-8dba-241d9b744683
@@ -689,8 +694,7 @@ data = (a = [1, 2, 3, 4],
689
694
# ╔═╡ a1c60d89-5d61-4a26-b61c-748aec38e674
690
695
y5, X5, w =unpack(data,
691
696
==(:a),
692
-
name ->elscitype(Tables.getcolumn(data, name)) == Continuous,
693
-
name ->true);
697
+
name ->elscitype(Tables.getcolumn(data, name)) == Continuous);
694
698
695
699
# ╔═╡ b5b23e79-35ce-4857-9727-ed822e4fd85d
696
700
md"...attempt to guess the evaluations of the following (uncomment to see the results):"
0 commit comments