-
Notifications
You must be signed in to change notification settings - Fork 1
/
1234.py
86 lines (67 loc) · 2.63 KB
/
1234.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Logistic Regression
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import sklearn.model_selection as skm
# Importing the datasets
datasets = pd.read_csv('/Users/karthik/Desktop/MS-M/SEM2/OMS/HomeWork/HW3/Social_Network_Ads.csv')
print(datasets.head())
X = datasets.iloc[ : , [2,3]].values
print(X)
Y = datasets.iloc[:, 4].values
print(Y)
# Splitting the dataset into the Training set and Test set
#from sklearn.model_selection import train_test_split
print(len(datasets))
X_Train, X_Test, Y_Train, Y_Test = skm.train_test_split(X, Y, test_size = 0.25)
print(len(X_Train))
print(len(X_Test))
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_Train = sc_X.fit_transform(X_Train)
X_Test = sc_X.transform(X_Test)
# Fitting the Logistic Regression into the Training set
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(X_Train, Y_Train)
#from sklearn.metrics import classification_report
#print(classification_report(Y_Test, Y_Pred))
from scipy import stats
stats.chisqprob = lambda chisq, df: stats.chi2.sf(chisq, df)
import statsmodels.api as sm
logit_model=sm.Logit(Y_Train,X_Train)
result=logit_model.fit()
print(result.summary())
# Predicting the test set results
Y_Pred = classifier.predict(X_Test)
print(Y_Pred)
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(Y_Test, Y_Pred)
# Visualising the Training set results
from matplotlib.colors import ListedColormap
X_Set, Y_Set = X_Train, Y_Train
X1, X2 = np.meshgrid(np.arange(start = X_Set[:,0].min() -1, stop = X_Set[:, 0].max() +1, step = 0.01),
np.arange(start = X_Set[:,1].min() -1, stop = X_Set[:, 1].max() +1, step = 0.01))
plt.contourf(X1,X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X2.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(Y_Set)):
plt.scatter(X_Set[Y_Set == j, 0], X_Set[Y_Set == j,1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Logistic Regression ( Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
#Exploratory Data Analysis
#Create a histogram of the Age
sns.distplot(datasets['Age'], bins=20)
#Create a jointplot showing Area Income versus Age.
sns.jointplot(datasets['EstimatedSalary'], datasets['Age'], kind= 'kde')
#Create a pairplot with the hue defined by the 'Clicked on Ad' column feature.
sns.pairplot(datasets, hue='Purchased')