-
Notifications
You must be signed in to change notification settings - Fork 4
/
run_funque.py
executable file
·169 lines (135 loc) · 5.12 KB
/
run_funque.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python3
import matplotlib
matplotlib.use('Agg')
import sys
import os
import numpy as np
from funque.config import FunqueConfig, DisplayConfig
from funque.core.asset import Asset
from funque.core.quality_runner import FunqueQualityRunner
from funque.tools.misc import get_file_name_without_extension, get_cmd_option, \
cmd_option_exists
from funque.tools.stats import ListStats
__copyright__ = "Copyright 2016-2020, Netflix, Inc."
__license__ = "BSD+Patent"
FMTS = ['yuv420p', 'yuv422p', 'yuv444p',
'yuv420p10le', 'yuv422p10le', 'yuv444p10le',
'yuv420p12le', 'yuv422p12le', 'yuv444p12le',
'yuv420p16le', 'yuv422p16le', 'yuv444p16le',
]
OUT_FMTS = ['text (default)', 'xml', 'json']
POOL_METHODS = ['mean', 'harmonic_mean', 'min', 'median', 'perc5', 'perc10', 'perc20']
def print_usage():
print("usage: " + os.path.basename(sys.argv[0]) \
+ " fmt width height ref_path dis_path [--model model_path] [--out-fmt out_fmt] " \
"[--phone-model] [--ci] [--save-plot plot_dir]\n")
print("fmt:\n\t" + "\n\t".join(FMTS) + "\n")
print("out_fmt:\n\t" + "\n\t".join(OUT_FMTS) + "\n")
def main():
if len(sys.argv) < 6:
print_usage()
return 2
try:
fmt = sys.argv[1]
width = int(sys.argv[2])
height = int(sys.argv[3])
ref_file = sys.argv[4]
dis_file = sys.argv[5]
except ValueError:
print_usage()
return 2
if width < 0 or height < 0:
print("width and height must be non-negative, but are {w} and {h}".format(w=width, h=height))
print_usage()
return 2
if fmt not in FMTS:
print_usage()
return 2
model_path = get_cmd_option(sys.argv, 6, len(sys.argv), '--model')
out_fmt = get_cmd_option(sys.argv, 6, len(sys.argv), '--out-fmt')
if not (out_fmt is None
or out_fmt == 'xml'
or out_fmt == 'json'
or out_fmt == 'text'):
print_usage()
return 2
pool_method = get_cmd_option(sys.argv, 6, len(sys.argv), '--pool')
if not (pool_method is None
or pool_method in POOL_METHODS):
print('--pool can only have option among {}'.format(', '.join(POOL_METHODS)))
return 2
show_local_explanation = cmd_option_exists(sys.argv, 6, len(sys.argv), '--local-explain')
phone_model = cmd_option_exists(sys.argv, 6, len(sys.argv), '--phone-model')
enable_conf_interval = cmd_option_exists(sys.argv, 6, len(sys.argv), '--ci')
save_plot_dir = get_cmd_option(sys.argv, 6, len(sys.argv), '--save-plot')
if show_local_explanation and enable_conf_interval:
print('cannot set both --local-explain and --ci flags')
return 2
asset = Asset(dataset="cmd",
content_id=abs(hash(get_file_name_without_extension(ref_file))) % (10 ** 16),
asset_id=abs(hash(get_file_name_without_extension(ref_file))) % (10 ** 16),
workdir_root=FunqueConfig.workdir_path(),
ref_path=ref_file,
dis_path=dis_file,
asset_dict={'width':width, 'height':height, 'yuv_type':fmt}
)
assets = [asset]
if show_local_explanation:
from funque.core.quality_runner_extra import FunqueQualityRunnerWithLocalExplainer
runner_class = FunqueQualityRunnerWithLocalExplainer
elif enable_conf_interval:
from funque.core.quality_runner import BootstrapFunqueQualityRunner
runner_class = BootstrapFunqueQualityRunner
else:
runner_class = FunqueQualityRunner
if model_path is None:
optional_dict = None
else:
optional_dict = {'model_filepath':model_path}
if phone_model:
if optional_dict is None:
optional_dict = {}
optional_dict['enable_transform_score'] = True
runner = runner_class(
assets, None, fifo_mode=True,
delete_workdir=True,
result_store=None,
optional_dict=optional_dict,
optional_dict2=None,
)
# run
runner.run()
result = runner.results[0]
# pooling
if pool_method == 'harmonic_mean':
result.set_score_aggregate_method(ListStats.harmonic_mean)
elif pool_method == 'min':
result.set_score_aggregate_method(np.min)
elif pool_method == 'median':
result.set_score_aggregate_method(np.median)
elif pool_method == 'perc5':
result.set_score_aggregate_method(ListStats.perc5)
elif pool_method == 'perc10':
result.set_score_aggregate_method(ListStats.perc10)
elif pool_method == 'perc20':
result.set_score_aggregate_method(ListStats.perc20)
else: # None or 'mean'
pass
# output
if out_fmt == 'xml':
print(result.to_xml())
elif out_fmt == 'json':
print(result.to_json())
else: # None or 'text'
print(str(result))
# local explanation
if show_local_explanation:
runner.show_local_explanations([result])
if save_plot_dir is None:
DisplayConfig.show()
else:
DisplayConfig.show(write_to_dir=save_plot_dir)
return 0
if __name__ == "__main__":
ret = main()
exit(ret)