forked from GoogleCloudPlatform/python-docs-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
batch_sample.py
89 lines (71 loc) · 2.83 KB
/
batch_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This application demonstrates how to do batch operations using Cloud
Spanner.
For more information, see the README.rst under /spanner.
"""
import argparse
import concurrent.futures
import time
from google.cloud import spanner
# [START spanner_batch_client]
def run_batch_query(instance_id, database_id):
"""Runs an example batch query."""
# Expected Table Format:
# CREATE TABLE Singers (
# SingerId INT64 NOT NULL,
# FirstName STRING(1024),
# LastName STRING(1024),
# SingerInfo BYTES(MAX),
# ) PRIMARY KEY (SingerId);
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
# Create the batch transaction and generate partitions
snapshot = database.batch_snapshot()
partitions = snapshot.generate_read_batches(
table='Singers',
columns=('SingerId', 'FirstName', 'LastName',),
keyset=spanner.KeySet(all_=True)
)
# Create a pool of workers for the tasks
start = time.time()
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(process, snapshot, p) for p in partitions]
for future in concurrent.futures.as_completed(futures, timeout=3600):
finish, row_ct = future.result()
elapsed = finish - start
print(u'Completed {} rows in {} seconds'.format(row_ct, elapsed))
# Clean up
snapshot.close()
def process(snapshot, partition):
"""Processes the requests of a query in an separate process."""
print('Started processing partition.')
row_ct = 0
for row in snapshot.process_read_batch(partition):
print(u'SingerId: {}, AlbumId: {}, AlbumTitle: {}'.format(*row))
row_ct += 1
return time.time(), row_ct
# [END spanner_batch_client]
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument(
'instance_id', help='Your Cloud Spanner instance ID.')
parser.add_argument(
'database_id', help='Your Cloud Spanner database ID.',
default='example_db')
args = parser.parse_args()
run_batch_query(args.instance_id, args.database_id)