-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
58 lines (47 loc) · 1.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from game import Game
from human_agent import HumanControlledAgent
from agent import Agent
from argparse import ArgumentParser
from dataclasses import dataclass
@dataclass
class Config:
max_memory : int = 100_000
batch_size : int = 1024
learning_rate : float = 0.001
max_games : int = 200
max_epsilon : float = 0.4
min_epsilon : float = 0.0
gamma : float = 0.9
training : bool = True
human : bool = False
def main(args : Config):
game : Game = Game()
agent = None
if args.human:
agent = HumanControlledAgent(game=game)
else:
agent = Agent(
game=game,
max_memory=args.max_memory,
batch_size=args.batch_size,
learning_rate=args.learning_rate,
max_games=args.max_games,
max_epsilon=args.max_epsilon,
min_epsilon=args.min_epsilon,
gamma=args.gamma,
training=args.training
)
agent.run()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--max-memory", type=int, default=100_000)
parser.add_argument("--batch-size", type=int, default=1024)
parser.add_argument("--learning-rate", type=float, default=0.001)
parser.add_argument("--max-games", type=int, default=200)
parser.add_argument("--max-epsilon", type=float, default=0.4)
parser.add_argument("--min-epsilon", type=float, default=0.0)
parser.add_argument("--gamma", type=float, default=0.9)
parser.add_argument("--training", type=lambda t : t.lower() == "true", default=True)
parser.add_argument("--human", type=lambda t : t.lower() == "true", default=False)
args = parser.parse_args()
main(args)