forked from landreman/bdistrib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
svd_inductance_matrices.f90
474 lines (425 loc) · 19.5 KB
/
svd_inductance_matrices.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
! Documentation of LAPACK's SVD subroutine DGESDD is copied at the end of this file for convenience.
subroutine svd_inductance_matrices()
! This subroutine finds the singular values of the two inductance matrices
use global_variables, only: inductance_plasma_outer, inductance_middle_outer, inductance_plasma_middle, &
num_basis_functions_plasma, num_basis_functions_middle, num_basis_functions_outer, &
n_singular_values_inductance_plasma_outer, svd_s_inductance_plasma_outer, &
n_singular_values_inductance_middle_outer, svd_s_inductance_middle_outer, &
n_singular_values_inductance_plasma_middle, svd_s_inductance_plasma_middle, &
svd_uT_inductance_middle_outer, svd_v_inductance_middle_outer, allSVDsSucceeded, &
n_singular_vectors_to_save, nu_plasma, nv_plasma, nu_middle, nv_middle, &
basis_functions_plasma, basis_functions_middle, &
svd_u_inductance_plasma_middle, svd_v_inductance_plasma_middle, &
svd_u_inductance_plasma_middle_uv, svd_v_inductance_plasma_middle_uv, &
xm_plasma, xn_plasma, mnmax_plasma, save_vectors_in_uv_format, &
svd_u_inductance_plasma_middle_dominant_m, svd_u_inductance_plasma_middle_dominant_n, &
svd_u_inductance_plasma_middle_all, svd_v_inductance_plasma_middle_all, &
Bnormal_from_1_over_R_field_inductance, Bnormal_from_1_over_R_field, &
Bnormal_from_const_v_coils_inductance, Bnormal_from_const_v_coils, &
Bnormal_from_plasma_current_inductance, Bnormal_from_plasma_current
use stel_kinds
implicit none
character :: JOBZ
integer :: INFO, LDA, LDU, LDVT, LWORK, M, N, iflag
integer :: tic, toc, countrate, tic1, toc1
real(dp), dimension(:,:), allocatable :: A, U, VT
real(dp), dimension(:), allocatable :: WORK
integer, dimension(:), allocatable :: IWORK
integer :: i,j,index
real(dp) :: val
!*************************************************************************
! Beginning of section related to the plasma-to-outer inductance matrix.
!*************************************************************************
allSVDsSucceeded = .true.
print *,"Beginning SVD of the inductance matrix between the plasma and outer surfaces."
call system_clock(tic,countrate)
JOBZ='N' ! For now compute none of the singular vectors. We could change this.
M = num_basis_functions_plasma
N = num_basis_functions_outer
LDA = M
LDU = M
LDVT = N
! This next formula comes from the LAPACK documentation at the end of the file.
LWORK = max( 3*min(M,N) + max(max(M,N),7*min(M,N)), &
3*min(M,N) + max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)), &
min(M,N)*(6+4*min(M,N))+max(M,N))
allocate(WORK(LWORK),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(IWORK(8*min(M,N)),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
n_singular_values_inductance_plasma_outer = min(M,N)
allocate(svd_s_inductance_plasma_outer(n_singular_values_inductance_plasma_outer),stat=iflag)
! Matrix is destroyed by LAPACK, so make a copy:
allocate(A(M,N),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
A = inductance_plasma_outer
allocate(U(M,M),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(VT(N,N),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
! Call LAPACK to do the SVD:
call DGESDD(JOBZ, M, N, A, LDA, svd_s_inductance_plasma_outer, U, LDU, VT, LDVT, WORK, LWORK, IWORK, INFO)
if (INFO==0) then
print *,"SVD (DGESDD) successful."
if (n_singular_values_inductance_plasma_outer<5) then
print *,"Singular values:",svd_s_inductance_plasma_outer
else
print *,"First 5 singular values:",svd_s_inductance_plasma_outer(1:5)
print *,"Last 5 singular values:", &
svd_s_inductance_plasma_outer(n_singular_values_inductance_plasma_outer-4:n_singular_values_inductance_plasma_outer)
end if
else if (INFO>0) then
print *,"Error in SVD (DGESDD): Did not converge."
allSVDsSucceeded = .false.
else
print *,"Error in SVD (DGESDD): Argument",INFO," was invalid."
allSVDsSucceeded = .false.
end if
deallocate(A,U,VT,WORK,IWORK)
call system_clock(toc)
print *,"Done with SVD. Took ",real(toc-tic)/countrate," sec."
!*************************************************************************
! End of section related to the plasma-to-outer inductance matrix.
!*************************************************************************
!*************************************************************************
! Beginning of section related to the middle-to-outer inductance matrix.
!*************************************************************************
print *,"Beginning SVD of the inductance matrix between the middle and outer surfaces."
call system_clock(tic,countrate)
JOBZ='A' ! For the middle-outer inductance matrix, we need all the singular vectors.
M = num_basis_functions_middle
N = num_basis_functions_outer
LDA = M
LDU = M
LDVT = N
! This next formula comes from the LAPACK documentation at the end of the file.
LWORK = max( 3*min(M,N) + max(max(M,N),7*min(M,N)), &
3*min(M,N) + max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)), &
min(M,N)*(6+4*min(M,N))+max(M,N))
allocate(WORK(LWORK),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(IWORK(8*min(M,N)),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
n_singular_values_inductance_middle_outer = min(M,N)
allocate(svd_s_inductance_middle_outer(n_singular_values_inductance_middle_outer),stat=iflag)
! Matrix is destroyed by LAPACK, so make a copy:
allocate(A(M,N),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
A = inductance_middle_outer
allocate(U(M,M),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(VT(N,N),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(svd_uT_inductance_middle_outer(M,M),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(svd_v_inductance_middle_outer(N,N),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
! Call LAPACK to do the SVD:
call DGESDD(JOBZ, M, N, A, LDA, svd_s_inductance_middle_outer, U, LDU, &
VT, LDVT, WORK, LWORK, IWORK, INFO)
if (INFO==0) then
print *,"SVD (DGESDD) successful."
if (n_singular_values_inductance_middle_outer<5) then
print *,"Singular values:",svd_s_inductance_middle_outer
else
print *,"First 5 singular values:",svd_s_inductance_middle_outer(1:5)
print *,"Last 5 singular values:", &
svd_s_inductance_middle_outer(n_singular_values_inductance_middle_outer-4:n_singular_values_inductance_middle_outer)
end if
else if (INFO>0) then
print *,"Error in SVD (DGESDD): Did not converge."
allSVDsSucceeded = .false.
else
print *,"Error in SVD (DGESDD): Argument",INFO," was invalid."
allSVDsSucceeded = .false.
end if
svd_uT_inductance_middle_outer = transpose(U)
svd_v_inductance_middle_outer = transpose(VT)
deallocate(A,U,VT,WORK,IWORK)
call system_clock(toc)
print *,"Done with SVD. Took ",real(toc-tic)/countrate," sec."
!*************************************************************************
! End of section related to the middle-to-outer inductance matrix.
!*************************************************************************
!*************************************************************************
! Beginning of section related to the plasma-to-middle inductance matrix.
!*************************************************************************
print *,"Beginning SVD of the inductance matrix between the plasma and middle surfaces."
call system_clock(tic,countrate)
JOBZ='A' ! For the middle-outer inductance matrix, we need all the singular vectors.
M = num_basis_functions_plasma
N = num_basis_functions_middle
LDA = M
LDU = M
LDVT = N
! This next formula comes from the LAPACK documentation at the end of the file.
LWORK = max( 3*min(M,N) + max(max(M,N),7*min(M,N)), &
3*min(M,N) + max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)), &
min(M,N)*(6+4*min(M,N))+max(M,N))
allocate(WORK(LWORK),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(IWORK(8*min(M,N)),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
n_singular_values_inductance_plasma_middle = min(M,N)
allocate(svd_s_inductance_plasma_middle(n_singular_values_inductance_plasma_middle),stat=iflag)
! Matrix is destroyed by LAPACK, so make a copy:
allocate(A(M,N),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
A = inductance_plasma_middle
allocate(U(M,M),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(VT(N,N),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(svd_u_inductance_plasma_middle(num_basis_functions_plasma,n_singular_vectors_to_save),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(svd_v_inductance_plasma_middle(num_basis_functions_middle,n_singular_vectors_to_save),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(svd_u_inductance_plasma_middle_all(num_basis_functions_plasma,num_basis_functions_plasma),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(svd_v_inductance_plasma_middle_all(num_basis_functions_middle,num_basis_functions_middle),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
if (save_vectors_in_uv_format) then
allocate(svd_u_inductance_plasma_middle_uv(nu_plasma*nv_plasma,n_singular_vectors_to_save),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(svd_v_inductance_plasma_middle_uv(nu_middle*nv_middle,n_singular_vectors_to_save),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
end if
! Call LAPACK to do the SVD:
call DGESDD(JOBZ, M, N, A, LDA, svd_s_inductance_plasma_middle, U, LDU, &
VT, LDVT, WORK, LWORK, IWORK, INFO)
if (INFO==0) then
print *,"SVD (DGESDD) successful."
if (n_singular_values_inductance_plasma_middle<5) then
print *,"Singular values:",svd_s_inductance_plasma_middle
else
print *,"First 5 singular values:",svd_s_inductance_plasma_middle(1:5)
print *,"Last 5 singular values:", &
svd_s_inductance_plasma_middle(n_singular_values_inductance_plasma_middle-4:n_singular_values_inductance_plasma_middle)
end if
else if (INFO>0) then
print *,"Error in SVD (DGESDD): Did not converge."
allSVDsSucceeded = .false.
else
print *,"Error in SVD (DGESDD): Argument",INFO," was invalid."
allSVDsSucceeded = .false.
end if
call system_clock(tic1)
! Convert singular vectors from basis functions to functions of (u,v):
svd_u_inductance_plasma_middle = U(:,1:n_singular_vectors_to_save)
svd_v_inductance_plasma_middle = transpose(VT(1:n_singular_vectors_to_save,:))
svd_u_inductance_plasma_middle_all = U
svd_v_inductance_plasma_middle_all = transpose(VT)
if (save_vectors_in_uv_format) then
svd_u_inductance_plasma_middle_uv = matmul(basis_functions_plasma, svd_u_inductance_plasma_middle)
svd_v_inductance_plasma_middle_uv = matmul(basis_functions_middle, svd_v_inductance_plasma_middle)
end if
Bnormal_from_1_over_R_field_inductance = matmul(Bnormal_from_1_over_R_field,U)
Bnormal_from_const_v_coils_inductance = matmul(Bnormal_from_const_v_coils, U)
Bnormal_from_plasma_current_inductance = matmul(Bnormal_from_plasma_current,U)
call system_clock(toc1)
print *," Final matmuls: ",real(toc1-tic1)/countrate," sec."
! Compute dominant (m,n) for each left singular vector.
allocate(svd_u_inductance_plasma_middle_dominant_m(num_basis_functions_plasma),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
allocate(svd_u_inductance_plasma_middle_dominant_n(num_basis_functions_plasma),stat=iflag)
if (iflag .ne. 0) stop 'Allocation error!'
do i = 1,num_basis_functions_plasma
index = 1
val = abs(U(1,i))
do j = 2,num_basis_functions_plasma
if (abs(U(j,i))>val) then
index = j
val = abs(U(j,i))
end if
end do
if (index > mnmax_plasma) then
svd_u_inductance_plasma_middle_dominant_m(i) = xm_plasma(index-mnmax_plasma)
svd_u_inductance_plasma_middle_dominant_n(i) = xn_plasma(index-mnmax_plasma)
else
svd_u_inductance_plasma_middle_dominant_m(i) = xm_plasma(index)
svd_u_inductance_plasma_middle_dominant_n(i) = xn_plasma(index)
end if
end do
deallocate(A,U,VT,WORK,IWORK)
call system_clock(toc)
print *,"Done with SVD. Took ",real(toc-tic)/countrate," sec."
!*************************************************************************
! End of section related to the middle-to-outer inductance matrix.
!*************************************************************************
end subroutine svd_inductance_matrices
! Here is the LAPACK documentation for the relevant SVD subroutine:
!!$* SUBROUTINE DGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
!!$* LWORK, IWORK, INFO )
!!$*
!!$* .. Scalar Arguments ..
!!$* CHARACTER JOBZ
!!$* INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
!!$* ..
!!$* .. Array Arguments ..
!!$* INTEGER IWORK( * )
!!$* DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ),
!!$* $ VT( LDVT, * ), WORK( * )
!!$* ..
!!$*
!!$*
!!$*> \par Purpose:
!!$* =============
!!$*>
!!$*> \verbatim
!!$*>
!!$*> DGESDD computes the singular value decomposition (SVD) of a real
!!$*> M-by-N matrix A, optionally computing the left and right singular
!!$*> vectors. If singular vectors are desired, it uses a
!!$*> divide-and-conquer algorithm.
!!$*>
!!$*> The SVD is written
!!$*>
!!$*> A = U * SIGMA * transpose(V)
!!$*>
!!$*> where SIGMA is an M-by-N matrix which is zero except for its
!!$*> min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
!!$*> V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
!!$*> are the singular values of A; they are real and non-negative, and
!!$*> are returned in descending order. The first min(m,n) columns of
!!$*> U and V are the left and right singular vectors of A.
!!$*>
!!$*> Note that the routine returns VT = V**T, not V.
!!$*>
!!$*> The divide and conquer algorithm makes very mild assumptions about
!!$*> floating point arithmetic. It will work on machines with a guard
!!$*> digit in add/subtract, or on those binary machines without guard
!!$*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
!!$*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
!!$*> without guard digits, but we know of none.
!!$*> \endverbatim
!!$*
!!$* Arguments:
!!$* ==========
!!$*
!!$*> \param[in] JOBZ
!!$*> \verbatim
!!$*> JOBZ is CHARACTER*1
!!$*> Specifies options for computing all or part of the matrix U:
!!$*> = 'A': all M columns of U and all N rows of V**T are
!!$*> returned in the arrays U and VT;
!!$*> = 'S': the first min(M,N) columns of U and the first
!!$*> min(M,N) rows of V**T are returned in the arrays U
!!$*> and VT;
!!$*> = 'O': If M >= N, the first N columns of U are overwritten
!!$*> on the array A and all rows of V**T are returned in
!!$*> the array VT;
!!$*> otherwise, all columns of U are returned in the
!!$*> array U and the first M rows of V**T are overwritten
!!$*> in the array A;
!!$*> = 'N': no columns of U or rows of V**T are computed.
!!$*> \endverbatim
!!$*>
!!$*> \param[in] M
!!$*> \verbatim
!!$*> M is INTEGER
!!$*> The number of rows of the input matrix A. M >= 0.
!!$*> \endverbatim
!!$*>
!!$*> \param[in] N
!!$*> \verbatim
!!$*> N is INTEGER
!!$*> The number of columns of the input matrix A. N >= 0.
!!$*> \endverbatim
!!$*>
!!$*> \param[in,out] A
!!$*> \verbatim
!!$*> A is DOUBLE PRECISION array, dimension (LDA,N)
!!$*> On entry, the M-by-N matrix A.
!!$*> On exit,
!!$*> if JOBZ = 'O', A is overwritten with the first N columns
!!$*> of U (the left singular vectors, stored
!!$*> columnwise) if M >= N;
!!$*> A is overwritten with the first M rows
!!$*> of V**T (the right singular vectors, stored
!!$*> rowwise) otherwise.
!!$*> if JOBZ .ne. 'O', the contents of A are destroyed.
!!$*> \endverbatim
!!$*>
!!$*> \param[in] LDA
!!$*> \verbatim
!!$*> LDA is INTEGER
!!$*> The leading dimension of the array A. LDA >= max(1,M).
!!$*> \endverbatim
!!$*>
!!$*> \param[out] S
!!$*> \verbatim
!!$*> S is DOUBLE PRECISION array, dimension (min(M,N))
!!$*> The singular values of A, sorted so that S(i) >= S(i+1).
!!$*> \endverbatim
!!$*>
!!$*> \param[out] U
!!$*> \verbatim
!!$*> U is DOUBLE PRECISION array, dimension (LDU,UCOL)
!!$*> UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
!!$*> UCOL = min(M,N) if JOBZ = 'S'.
!!$*> If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
!!$*> orthogonal matrix U;
!!$*> if JOBZ = 'S', U contains the first min(M,N) columns of U
!!$*> (the left singular vectors, stored columnwise);
!!$*> if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
!!$*> \endverbatim
!!$*>
!!$*> \param[in] LDU
!!$*> \verbatim
!!$*> LDU is INTEGER
!!$*> The leading dimension of the array U. LDU >= 1; if
!!$*> JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
!!$*> \endverbatim
!!$*>
!!$*> \param[out] VT
!!$*> \verbatim
!!$*> VT is DOUBLE PRECISION array, dimension (LDVT,N)
!!$*> If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
!!$*> N-by-N orthogonal matrix V**T;
!!$*> if JOBZ = 'S', VT contains the first min(M,N) rows of
!!$*> V**T (the right singular vectors, stored rowwise);
!!$*> if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
!!$*> \endverbatim
!!$*>
!!$*> \param[in] LDVT
!!$*> \verbatim
!!$*> LDVT is INTEGER
!!$*> The leading dimension of the array VT. LDVT >= 1; if
!!$*> JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
!!$*> if JOBZ = 'S', LDVT >= min(M,N).
!!$*> \endverbatim
!!$*>
!!$*> \param[out] WORK
!!$*> \verbatim
!!$*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!!$*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
!!$*> \endverbatim
!!$*>
!!$*> \param[in] LWORK
!!$*> \verbatim
!!$*> LWORK is INTEGER
!!$*> The dimension of the array WORK. LWORK >= 1.
!!$*> If JOBZ = 'N',
!!$*> LWORK >= 3*min(M,N) + max(max(M,N),7*min(M,N)).
!!$*> If JOBZ = 'O',
!!$*> LWORK >= 3*min(M,N) +
!!$*> max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)).
!!$*> If JOBZ = 'S' or 'A'
!!$*> LWORK >= min(M,N)*(6+4*min(M,N))+max(M,N)
!!$*> For good performance, LWORK should generally be larger.
!!$*> If LWORK = -1 but other input arguments are legal, WORK(1)
!!$*> returns the optimal LWORK.
!!$*> \endverbatim
!!$*>
!!$*> \param[out] IWORK
!!$*> \verbatim
!!$*> IWORK is INTEGER array, dimension (8*min(M,N))
!!$*> \endverbatim
!!$*>
!!$*> \param[out] INFO
!!$*> \verbatim
!!$*> INFO is INTEGER
!!$*> = 0: successful exit.
!!$*> < 0: if INFO = -i, the i-th argument had an illegal value.
!!$*> > 0: DBDSDC did not converge, updating process failed.
!!$*> \endverbatim