Skip to content
This repository was archived by the owner on Apr 2, 2019. It is now read-only.

aakaashjois/Colorizing-Grayscale-Images

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Colorizing grayscale images

WHAT?

Convert grayscale image to a colored image using different deep learning techniques.

HOW?

We use 3 different models to try and colorize the grayscale image.

  1. Deep Koalarization [1]
  2. Inception-VGG AutoEncoder
  3. VGG AutoEncoder
  4. GAN (Experimental)

SETUP

DATA PREP

This project uses Microsoft COCO Datset[2]. This project uses 2017 train, validation and test images. But, any year data should work if retraining the model.

Place the images in ./data/train, ./data/validation and ./data/test folders.

INSTALLING DEPENDENCIES

  1. Install Python 3.6
  2. Install virtualenv
  3. Clone this repo
  4. cd into the repo
  5. Create a virtual environment
  6. Run pip install -r requirements.txt (Use requirements-gpu.txt if using a GPU)

LICENSE

This project is licensed under Apache License 2.0. The terms of the license can be found in LICENSE.

REFERENCES

  1. Baldassarre, Federico, Diego González Morín, and Lucas Rodés-Guirao. "Deep Koalarization: Image Colorization using CNNs and Inception-ResNet-v2." arXiv preprint arXiv:1712.03400 (2017).
  2. Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." European conference on computer vision. Springer, Cham, 2014.

About

Utilize deep learning models to automatically colorize grayscale images

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages