forked from dathere/qsv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrequency.rs
218 lines (192 loc) · 7.46 KB
/
frequency.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
use std::fs;
use std::io;
use stats::{merge_all, Frequencies};
use threadpool::ThreadPool;
use crate::config::{Config, Delimiter};
use crate::index::Indexed;
use crate::select::{SelectColumns, Selection};
use crate::util;
use crate::CliResult;
use serde::Deserialize;
static USAGE: &str = "
Compute a frequency table on CSV data.
The frequency table is formatted as CSV data:
field,value,count
By default, there is a row for the N most frequent values for each field in the
data. The order and number of values can be tweaked with --asc and --limit,
respectively.
Since this computes an exact frequency table, memory proportional to the
cardinality of each column is required.
Usage:
qsv frequency [options] [<input>]
frequency options:
-s, --select <arg> Select a subset of columns to compute frequencies
for. See 'qsv select --help' for the format
details. This is provided here because piping 'qsv
select' into 'qsv frequency' will disable the use
of indexing.
-l, --limit <arg> Limit the frequency table to the N most common
items. Set to '0' to disable a limit.
[default: 10]
-a, --asc Sort the frequency tables in ascending order by
count. The default is descending order.
--no-nulls Don't include NULLs in the frequency table.
-j, --jobs <arg> The number of jobs to run in parallel.
This works better when the given CSV data has
an index already created. Note that a file handle
is opened for each job.
When set to '0', the number of jobs is set to the
number of CPUs detected divided by 4.
When set to '-1', the number of jobs is set to the
number of CPUs detected.
[default: 0]
Common options:
-h, --help Display this message
-o, --output <file> Write output to <file> instead of stdout.
-n, --no-headers When set, the first row will NOT be included
in the frequency table. Additionally, the 'field'
column will be 1-based indices instead of header
names.
-d, --delimiter <arg> The field delimiter for reading CSV data.
Must be a single character. (default: ,)
";
#[derive(Clone, Deserialize)]
struct Args {
arg_input: Option<String>,
flag_select: SelectColumns,
flag_limit: usize,
flag_asc: bool,
flag_no_nulls: bool,
flag_jobs: isize,
flag_output: Option<String>,
flag_no_headers: bool,
flag_delimiter: Option<Delimiter>,
}
pub fn run(argv: &[&str]) -> CliResult<()> {
let args: Args = util::get_args(USAGE, argv)?;
let rconfig = args.rconfig();
let mut wtr = Config::new(&args.flag_output).writer()?;
let (headers, tables) = match args.rconfig().indexed()? {
Some(ref mut idx) if args.njobs() > 1 => args.parallel_ftables(idx),
_ => args.sequential_ftables(),
}?;
wtr.write_record(vec!["field", "value", "count"])?;
let head_ftables = headers.into_iter().zip(tables.into_iter());
for (i, (header, ftab)) in head_ftables.enumerate() {
let mut header = header.to_vec();
if rconfig.no_headers {
header = (i + 1).to_string().into_bytes();
}
for (value, count) in args.counts(&ftab).into_iter() {
let count = count.to_string();
let row = vec![&*header, &*value, count.as_bytes()];
wtr.write_record(row)?;
}
}
Ok(())
}
type ByteString = Vec<u8>;
type Headers = csv::ByteRecord;
type FTable = Frequencies<Vec<u8>>;
type FTables = Vec<Frequencies<Vec<u8>>>;
impl Args {
fn rconfig(&self) -> Config {
Config::new(&self.arg_input)
.delimiter(self.flag_delimiter)
.no_headers(self.flag_no_headers)
.select(self.flag_select.clone())
}
fn counts(&self, ftab: &FTable) -> Vec<(ByteString, u64)> {
let mut counts = if self.flag_asc {
ftab.least_frequent()
} else {
ftab.most_frequent()
};
if self.flag_limit > 0 {
counts = counts.into_iter().take(self.flag_limit).collect();
}
counts
.into_iter()
.map(|(bs, c)| {
if b"" == &**bs {
(b"(NULL)"[..].to_vec(), c)
} else {
(bs.clone(), c)
}
})
.collect()
}
fn sequential_ftables(&self) -> CliResult<(Headers, FTables)> {
let mut rdr = self.rconfig().reader()?;
let (headers, sel) = self.sel_headers(&mut rdr)?;
Ok((headers, self.ftables(&sel, rdr.byte_records())?))
}
fn parallel_ftables(
&self,
idx: &mut Indexed<fs::File, fs::File>,
) -> CliResult<(Headers, FTables)> {
let mut rdr = self.rconfig().reader()?;
let (headers, sel) = self.sel_headers(&mut rdr)?;
if idx.count() == 0 {
return Ok((headers, vec![]));
}
let chunk_size = util::chunk_size(idx.count() as usize, self.njobs());
let nchunks = util::num_of_chunks(idx.count() as usize, chunk_size);
let pool = ThreadPool::new(self.njobs());
let (send, recv) = channel::bounded(0);
for i in 0..nchunks {
let (send, args, sel) = (send.clone(), self.clone(), sel.clone());
pool.execute(move || {
let mut idx = args.rconfig().indexed().unwrap().unwrap();
idx.seek((i * chunk_size) as u64).unwrap();
let it = idx.byte_records().take(chunk_size);
send.send(args.ftables(&sel, it).unwrap()).unwrap();
});
}
drop(send);
Ok((headers, merge_all(recv.iter()).unwrap()))
}
fn ftables<I>(&self, sel: &Selection, it: I) -> CliResult<FTables>
where
I: Iterator<Item = csv::Result<csv::ByteRecord>>,
{
let null = &b""[..].to_vec();
let nsel = sel.normal();
let mut tabs: Vec<_> = (0..nsel.len()).map(|_| Frequencies::new()).collect();
for row in it {
let row = row?;
for (i, field) in nsel.select(row.into_iter()).enumerate() {
let field = trim(field.to_vec());
if !field.is_empty() {
tabs[i].add(field);
} else if !self.flag_no_nulls {
tabs[i].add(null.clone());
}
}
}
Ok(tabs)
}
fn sel_headers<R: io::Read>(
&self,
rdr: &mut csv::Reader<R>,
) -> CliResult<(csv::ByteRecord, Selection)> {
let headers = rdr.byte_headers()?;
let sel = self.rconfig().selection(headers)?;
Ok((sel.select(headers).map(|h| h.to_vec()).collect(), sel))
}
fn njobs(&self) -> usize {
let num_cpus = util::num_cpus();
match self.flag_jobs {
0 => util::max_jobs(),
flag_jobs if flag_jobs < 0 => num_cpus,
flag_jobs if flag_jobs > num_cpus as isize => num_cpus,
_ => self.flag_jobs as usize,
}
}
}
fn trim(bs: ByteString) -> ByteString {
match String::from_utf8(bs) {
Ok(s) => s.trim().as_bytes().to_vec(),
Err(bs) => bs.into_bytes(),
}
}