-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_dataloader.py
78 lines (69 loc) · 3.13 KB
/
test_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import torch.utils.data as data
import os
import json
from transformers import BertTokenizer
import random
import copy
from torch.utils.data import DataLoader
from PIL import Image
from prefetch_generator import BackgroundGenerator
import numpy as np
class Dataset_test_image(data.Dataset):
def __init__(self, image_path, dataset_path, transform=None):
assert transform is not None, 'transform must not be None'
self.impath = image_path
self.datapath = dataset_path
with open(dataset_path, 'r', encoding='utf8') as fp:
self.dataset = json.load(fp)
self.transform = transform
print("Information about image gallery:{}".format(len(self)))
def __getitem__(self, index):
label = self.dataset[index]["id"]
file_path = self.dataset[index]["file_path"]
image = Image.open(os.path.join(self.impath, file_path)).convert('RGB')
image_gt = self.transform(image)
label = torch.tensor(label)
return label,image_gt
def __len__(self):
return len(self.dataset)
class Dataset_test_text(data.Dataset):
def __init__(self, image_path, dataset_path):
self.impath = image_path
self.datapath = dataset_path
with open(dataset_path, 'r', encoding='utf8') as fp:
self.dataset = json.load(fp)
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.initial_data = []
self.caption_depart_initial()
print("Information about text query:{}".format(len(self)))
def caption_to_tokens(self, caption):
result = self.tokenizer(caption, padding="max_length", max_length=64, truncation=True, return_tensors='pt')
token, mask = result["input_ids"], result["attention_mask"]
token, mask = token.squeeze(), mask.squeeze()
return token, mask
def caption_depart_initial(self):
for i in range(len(self.dataset)):
item = self.dataset[i]
label = item["id"]
captions_list = item["captions"]
for j in range(len(captions_list)):
caption = captions_list[j]
self.initial_data.append([label,caption])
def __getitem__(self, index):
caption = self.initial_data[index][1]
label = self.initial_data[index][0]
caption_tokens, masks = self.caption_to_tokens(caption)
caption_tokens = torch.tensor(caption_tokens)
label = torch.tensor(label)
return label, caption_tokens, masks
def __len__(self):
return len(self.initial_data)
def get_loader_test(args, transform, batch_size, num_workers):
image_path = args.image_path
test_path = args.test_path
dataset_image = Dataset_test_image(image_path, test_path,transform=transform)
dataset_text = Dataset_test_text(image_path,test_path)
image_dataloader = DataLoader(dataset_image, batch_size=batch_size, shuffle=False, num_workers=num_workers)
text_dataloader = DataLoader(dataset_text, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return image_dataloader, text_dataloader