-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtextual_model.py
36 lines (30 loc) · 1.29 KB
/
textual_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import BertModel
from torch.nn import init
from einops import rearrange
class Textual_encoder(nn.Module):
def __init__(self, encoder_type: str):
super(Textual_encoder, self).__init__()
self.encoder = BertModel.from_pretrained(encoder_type)
unfreeze_layers = ['layer.8','layer.9','layer.10', 'layer.11', 'pooler']
for name, param in self.encoder.named_parameters():
param.requires_grad = False
for ele in unfreeze_layers:
if ele in name:
param.requires_grad = True
break
def get_global_embedding(self,token,mask):
x = self.encoder(input_ids=token, attention_mask=mask)
pooler_output = x.pooler_output
return pooler_output
def get_local_embedding(self,token,mask):
x = self.encoder(input_ids=token, attention_mask=mask)
hidden_states = x.last_hidden_state
return hidden_states
def forward(self, token, mask):
x = self.encoder(input_ids=token, attention_mask=mask)
hidden_states = x.last_hidden_state
pooler_output = x.pooler_output
return pooler_output, hidden_states