-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_graph_segment.py
249 lines (203 loc) · 6.77 KB
/
demo_graph_segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# -*- coding: utf-8 -*-
# @Author: Meleko
# @Date: 2023-10-25 15:42:04
# @Last Modified by: Melkor
# @Last Modified time: 2023-10-30 02:29:34
from autolearner.config import *
from autolearner.model import *
import random
from tqdm import tqdm
import sys
# [Visualize]
# [Generate Data] (demo)
eps = 1e-6
blue_feature = torch.cat(
[torch.randn([1,2]), eps * torch.ones(1,2)] , dim = -1)
blue_feature.requires_grad = True
red_feature = torch.cat(
[torch.randn([1,2]), eps * torch.ones(1,2)] , dim = -1)
red_feature.requires_grad = True
def R(t):
return torch.tensor([[torch.cos(t), -torch.sin(t)],[torch.sin(t), torch.cos(t)]])
def make_house(loc, pos):
return loc, pos
def make_ship(loc, pos):
return loc, pos
def make_scene(n_tri, n_squ, n_house = 0, n_ship = 0):
data = []
edges = []
cats_count = [n_tri, n_squ, n_house, n_ship]
for _ in range(n_tri):
loc = torch.randn(2).clip(-.9, 0.9) / 2 + 0.5
pos = torch.randn(2).clip(-.9, 0.9) / 2 + 0.5
data.append(["triangle",loc,pos])
for _ in range(n_squ):
loc = torch.randn(2).clip(-.9, 0.9) / 2 + 0.5
pos = torch.randn(2).clip(-.9, 0.9) / 2 + 0.5
data.append(["square",loc,pos])
for _ in range(n_house):
loc = torch.randn(2).clip(-.9, 0.9) / 2 + 0.5
pos = 0.0 * torch.randn(2).clip(-.9, 0.9) / 2 + 0.5
data.append(
["triangle",loc + torch.tensor([0.0,0.1]),pos]
)
data.append(["square",loc,pos])
edges.append([len(data)-2, len(data)-1])
for _ in range(n_ship):
loc = torch.randn(2).clip(-.9, 0.9) / 2 + 0.5
pos = 0.0 * torch.randn(2).clip(-.9, 0.9) / 2 + 0.5
data.append(["triangle",loc,pos])
data.append(["square",loc,pos])
edges.append([len(data)-2, len(data)-1])
programs = []
answers = []
for i,cat in enumerate(["triangle","square","house","ship"]):
flag = cats_count[i] > 0
programs.append("exist(filter(scene(),{}))".format(cat))
if flag:answers.append("yes")
else:answers.append("no")
all_data = {"scene":data,"program":programs,"answer":answers, "edges":edges}
return all_data
def generate_gc_dataset(num_samples):
scenes = []
for i in range(num_samples):
n_t = int(random.random() + 0.5)
n_s = int(random.random() + 0.5)
n_house = int(random.random() + 1.5)
n_ship = int(random.random() + 0.5)
compose_scene = make_scene(n_t, n_s, n_house, n_ship)
scenes.append(compose_scene)
return scenes
def render_scene(objects):
return
# [Module]
class GraphPoolLayer(nn.Module):
def __init__(self, input_dim, output_dim, latent_dim = 128):
super().__init__()
self.input_dim = input_dim
self.latent_dim = latent_dim
self.output_dim = output_dim
def forward(self, x, edges):
return x
class ObjectFeatureEncoder(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.linear = FCBlock(128, 2 ,input_dim, output_dim)
def forward(self, x):
return self.linear(x)
class GraphCoarsenLearner(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.executor = SceneProgramExecutor(config)
self.object_feature_map = ObjectFeatureEncoder(5,config.concept_dim)
self.graph_coarsen = GraphPoolLayer(config.concept_dim, config.concept_dim)
def forward(self, scene, programs, answers, test = False):
all_loss = 0.00
object_features = []
for obj in scene:
if obj[0] == "house":
cat = torch.ones([1])
if obj[0] == "ship":
cat = torch.ones([1]) * 2
if obj[0] == "square":
cat = torch.ones([1]) * -1
if obj[0] == "triangle":
cat = torch.ones([1]) * -2
infeat = torch.cat([cat,obj[1],obj[2]])
obj_feat = self.object_feature_map(infeat)
obj_feat = torch.cat([obj_feat, torch.ones_like(obj_feat) * eps] , dim = -1).unsqueeze(0)
object_features.append(obj_feat)
object_features = torch.cat(object_features, dim = 0)
kwargs = {"end":[torch.ones(feat.shape[0]) for feat in [object_features]],"features":[object_features]}
acc = 0
total = 0
for i,program in enumerate(programs):
#program = "filter(scene(),ship)"
program = self.executor.parse(program)
o = self.executor(program, **kwargs)
if answers[i] == "yes":
all_loss -= o["end"].sigmoid().log()
if test and o["end"].sigmoid() > 0.5:acc += 1
else:
all_loss -= (1-o["end"].sigmoid()).log()
if test and o["end"].sigmoid() < 0.5:acc += 1
if test:total += 1
outputs = {"loss":all_loss,"acc":acc,"total":total}
return outputs
def eval(self, scene, program):
object_features = []
for obj in scene:
if obj[0] == "house":
cat = torch.ones([1])
if obj[0] == "ship":
cat = torch.ones([1]) * 2
if obj[0] == "square":
cat = torch.ones([1]) * -1
if obj[0] == "triangle":
cat = torch.ones([1]) * -2
infeat = torch.cat([cat,obj[1],obj[2]])
obj_feat = self.object_feature_map(infeat)
obj_feat = torch.cat([obj_feat, torch.ones_like(obj_feat) * eps] , dim = -1).unsqueeze(0)
object_features.append(obj_feat)
object_features = torch.cat(object_features, dim = 0)
kwargs = {"end":[torch.ones(feat.shape[0]) for feat in [object_features]],"features":[object_features]}
program = self.executor.parse(program)
o = self.executor(program, **kwargs)
return o
config.concept_dim = 50
gcl = GraphCoarsenLearner(config)
def train(model, dataset, epochs = 100):
loss_history = []
acc_history = []
params = [{"params":model.parameters()},]#{"params":blue_feature},{"params":features}]
optimizer = torch.optim.Adam(params, lr = 1e-3)
for epoch in range(epochs):
epoch_loss = 0.0
for data in dataset:
programs = data["program"]
answers = data["answer"]
outputs = model(data["scene"], programs, answers)
loss = outputs["loss"]
loss.backward()
optimizer.step()
optimizer.zero_grad()
epoch_loss += loss.detach()
epoch_loss /= (len(dataset) * 2)
loss_history.append(epoch_loss)
acc,total = evaluate(model,dataset)
acc_history.append(acc*1.0 /total)
if True or visualize:
print("loss:{}".format(epoch_loss))
plt.figure("visualize",figsize = (12,6))
plt.subplot(121)
plt.cla();plt.plot(loss_history)
plt.pause(0.01)
plt.subplot(122)
plt.cla();plt.plot(acc_history)
plt.pause(0.01)
return model
def evaluate(model, dataset):
acc = 0
total = 0
for data in dataset:
programs = data["program"]
answers = data["answer"]
outputs = model(data["scene"], programs, answers, True)
acc += outputs["acc"]
total += outputs["total"]
loss = outputs["loss"]
print("acc:{}/{}".format(acc,total))
return acc, total
# [Train the Model]
gc_dataset = generate_gc_dataset(num_samples = 100)
evaluate(gcl, gc_dataset)
model = train(gcl, gc_dataset)
evaluate(gcl, gc_dataset)
scene = gc_dataset[0]["scene"]
for obj in scene:print(obj[0], end= " ")
print("")
for cat in ["triangle","square","ship","house"]:
o = gcl.eval(scene, "filter(scene(),{})".format(cat))
print(cat,":",o["end"][0].sigmoid().detach().numpy())