-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_objects.py
93 lines (69 loc) · 2.4 KB
/
demo_objects.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# -*- coding: utf-8 -*-
# @Author: Meleko
# @Date: 2023-10-21 00:45:46
# @Last Modified by: Melkor
# @Last Modified time: 2023-10-28 22:52:05
from autolearner.model import *
from autolearner.config import *
scenenet = SceneNet(config)
from autolearner.datasets import SpriteData, DynamicSpriteData
from torch.utils.data import DataLoader
dataset = SpriteData(config, "train",resolution=config.resolution)
dataset = DynamicSpriteData(config, "train",resolution = config.resolution)
loader = DataLoader(dataset, shuffle = True)
for sample in loader:
#print(sample["image"].shape)
break;
import matplotlib.pyplot as plt
# Frame
vidarr = sample["video"]
frames = torch.tensor(vidarr)
img1_batch = torch.stack([frames[0,0,...], frames[0,50,...]]).float().permute(0,3,1,2)
img2_batch = torch.stack([frames[0,5,...], frames[0,1,...]]).float().permute(0,3,1,2)
#frames = "/Users/melkor/Desktop/test/mov"
sepr = 1
img1_batch = frames[0,:-sepr,...].float().permute(0,3,1,2)
img2_batch = frames[0,sepr:,...].float().permute(0,3,1,2)
print(img1_batch.shape)
print(img2_batch.shape)
weights = Raft_Large_Weights.DEFAULT
transforms = weights.transforms()
#img1_batch += torch.randn([3,64,64]) * 0.1
#img2_batch += torch.randn([3,64,64]) * 0.1
def preprocess(img1_batch, img2_batch):
img1_batch = torchvision.transforms.Resize(size=[128, 128], antialias=False)(img1_batch)
img2_batch = torchvision.transforms.Resize(size=[128, 128], antialias=False)(img2_batch)
return transforms(img1_batch, img2_batch)
img1_batch, img2_batch = preprocess(img1_batch, img2_batch)
#plt.ion()
#for i in range(vidarr.shape[1]):
# plt.clf()
# plt.imshow(vidarr[0,i,:,:,:])
# plt.pause(0.1)
#plt.ioff()
#img1_batch, img2_batch = preprocess(img1_batch,img2_batch)
flow_maps = compute_optical_flow(img1_batch,img2_batch)[-1]
flow_maps = flow_to_image(flow_maps)
flow_maps = flow_maps /255
#print(flow_maps.shape)
#print(flow_maps.detach()[0,...].permute(1,2,0))
plt.imshow(flow_maps.detach()[0].permute(1,2,0))
plt.show()
plt.ion()
for i in range(vidarr.shape[1] - sepr):
plt.subplot(121)
plt.cla()
plt.imshow(vidarr[0,i,:,:,:])
plt.pause(0.1)
plt.subplot(122)
plt.cla()
plt.imshow(flow_maps.detach()[i].permute(1,2,0))
plt.pause(0.01)
plt.ioff()
outputs = scenenet(sample["image"])
masks = outputs["masks"]
num_masks = masks.shape[1]
for i in range(num_masks):
plt.subplot(num_masks // 5, 5, i+1)
plt.imshow(masks[0,i,:,:].detach())
plt.show()