forked from caelan/pybullet-planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_turtlebot_motion.py
686 lines (605 loc) · 30.1 KB
/
test_turtlebot_motion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
from __future__ import print_function
import argparse
import random
import numpy as np
import time
from collections import OrderedDict
from pybullet_tools.utils import TURTLEBOT_URDF, joints_from_names, \
set_joint_positions, get_bodies, sample_placement, pairwise_collision, \
set_point, Point, create_box, stable_z, TAN, GREY, connect, PI, wait_if_gui, dump_body, set_all_color, BLUE, \
link_from_name, draw_pose, pose_from_pose2d, \
set_random_seed, set_numpy_seed, joint_from_name, safe_zip, draw_base_limits, BodySaver, WorldSaver, LockRenderer, \
elapsed_time, disconnect, flatten, \
INF, wait_for_duration, draw_aabb, DEFAULT_AABB_BUFFER, get_joint_positions, \
get_pairs, get_distance_fn, step_simulation, get_bodies_in_region, \
AABB, Profiler, pairwise_link_collision, BASE_LINK, get_collision_data, draw_pose2d, \
CIRCULAR_LIMITS, wrap_interval, rescale_interval, adjust_path, \
contact_collision, timer, get_aabb, Pose, get_all_links, can_collide, DEFAULT_RESOLUTION, \
load_pybullet, get_collision_fn, get_limits_fn, \
get_joint_velocities, control_joint, get_time_step, remove_handles, Interval, get_distance, \
get_duration_fn, velocity_control_joint, get_max_velocities, plan_base_joint_motion, \
UNBOUNDED_LIMITS, BLACK, GREEN, RED, add_line, \
point_from_pose, retime_path, smooth_path, get_acceleration_fn, discretize_curve
from motion_planners.trajectory.smooth import smooth_curve
from motion_planners.trajectory.limits import check_spline
from motion_planners.utils import default_selector, irange
#from motion_planners.tkinter.samplers import get_cost_fn
from motion_planners.lazy_prm import ROADMAPS
from pybullet_tools.retime import sample_curve
BASE_LINK_NAME = 'base_link'
BASE_JOINTS = ['x', 'y', 'theta']
DRAW_Z = 1e-1
DRAW_LENGTH = 0.5
MIN_AABB_VOLUME = DEFAULT_AABB_BUFFER**3
MAX_VELOCITIES = np.array([1., 1., PI / 4])
MAX_ACCELERATIONS = MAX_VELOCITIES / 0.25
#MAX_VELOCITIES *= INF
#MAX_ACCELERATIONS *= INF
MIN_PROXIMITY = 1e-2
N_DIGITS = 5
##################################################
def create_custom_base_limits(robot, base_limits):
return {joint_from_name(robot, joint): limits
for joint, limits in safe_zip(BASE_JOINTS[:2], zip(*base_limits))}
def sample_placements(body_surfaces, obstacles=None, savers=[], min_distances={}):
if obstacles is None:
obstacles = set(get_bodies()) - set(body_surfaces)
savers = list(savers) + [BodySaver(obstacle) for obstacle in obstacles]
if not isinstance(min_distances, dict):
min_distances = {body: min_distances for body in body_surfaces}
# TODO: max attempts here
for body, surface in body_surfaces.items(): # TODO: shuffle
min_distance = min_distances.get(body, 0.)
while True:
pose = sample_placement(body, surface)
if pose is None:
for saver in savers:
saver.restore()
return False
for saver in savers:
obstacle = saver.body
if obstacle in [body, surface]:
continue
saver.restore()
if pairwise_collision(body, obstacle, max_distance=min_distance):
break
else:
savers.append(BodySaver(body))
break
for saver in savers:
saver.restore()
return True
##################################################
def draw_waypoint(conf, z=DRAW_Z):
return draw_pose(pose_from_pose2d(conf, z=z), length=DRAW_LENGTH)
def draw_conf(pose2d, interval, base_z=1., z_interval=Interval(-0.5, 0.5), **kwargs):
return draw_pose2d(pose2d, z=base_z + rescale_interval(
wrap_interval(pose2d[2], interval=interval), old_interval=interval, new_interval=z_interval), **kwargs)
def draw_path(path2d, z=DRAW_Z, base_z=1., **kwargs):
if path2d is None:
return []
#return list(flatten(draw_pose(pose_from_pose2d(pose2d, z=z), **kwargs) for pose2d in path2d))
#return list(flatten(draw_pose2d(pose2d, z=z, **kwargs) for pose2d in path2d))
start = path2d[0]
mid_yaw = start[2]
#mid_yaw = wrap_interval(mid_yaw)
interval = (mid_yaw - PI, mid_yaw + PI)
#interval = CIRCULAR_LIMITS
draw_pose(pose_from_pose2d(start, z=base_z), length=1, **kwargs)
# TODO: draw the current pose
# TODO: line between orientations when there is a jump
return list(flatten(draw_conf(pose2d, interval, base_z, **kwargs) for pose2d in path2d))
def extract_full_path(robot, path_joints, path, all_joints):
with BodySaver(robot):
new_path = []
for conf in path:
set_joint_positions(robot, path_joints, conf)
new_path.append(get_joint_positions(robot, all_joints)) # TODO: do without assigning
return new_path
def draw_last_roadmap(robot, joints, only_checked=False, linear=True, down_sample=None, **kwargs):
q0 = get_joint_positions(robot, joints)
handles = []
if not ROADMAPS:
return handles
roadmap = ROADMAPS[-1]
for q in roadmap.samples:
q = q if len(q) == 3 else np.append(q[:2], q0[2:]) # TODO: make a function
handles.extend(draw_pose2d(q, z=DRAW_Z))
for v1, v2 in roadmap.edges:
color = BLACK
if roadmap.is_colliding(v1, v2):
color = RED
elif roadmap.is_safe(v1, v2):
color = GREEN
elif only_checked:
continue
if linear:
path = [roadmap.samples[v1], roadmap.samples[v2]]
else:
path = roadmap.get_path(v1, v2)
if down_sample is not None:
path = path[::down_sample] + [path[-1]]
#handles.extend(draw_path(path, **kwargs))
points = list(map(point_from_pose, [pose_from_pose2d(
q if len(q) == 3 else np.append(q[:2], q0[2:]), z=DRAW_Z) for q in path]))
handles.extend(add_line(p1, p2, color=color) for p1, p2 in get_pairs(points))
return handles
##################################################
def problem1(n_obstacles=10, wall_side=0.1, obst_width=0.25, obst_height=0.5):
floor_extent = 5.0
base_limits = (-floor_extent/2.*np.ones(2),
+floor_extent/2.*np.ones(2))
floor_height = 0.001
floor = create_box(floor_extent, floor_extent, floor_height, color=TAN)
set_point(floor, Point(z=-floor_height/2.))
wall1 = create_box(floor_extent + wall_side, wall_side, wall_side, color=GREY)
set_point(wall1, Point(y=floor_extent/2., z=wall_side/2.))
wall2 = create_box(floor_extent + wall_side, wall_side, wall_side, color=GREY)
set_point(wall2, Point(y=-floor_extent/2., z=wall_side/2.))
wall3 = create_box(wall_side, floor_extent + wall_side, wall_side, color=GREY)
set_point(wall3, Point(x=floor_extent/2., z=wall_side/2.))
wall4 = create_box(wall_side, floor_extent + wall_side, wall_side, color=GREY)
set_point(wall4, Point(x=-floor_extent/2., z=wall_side/2.))
wall5 = create_box(obst_width, obst_width, obst_height, color=GREY)
set_point(wall5, Point(z=obst_height / 2.))
walls = [wall1, wall2, wall3, wall4, wall5]
initial_surfaces = OrderedDict()
for _ in range(n_obstacles - 1):
body = create_box(obst_width, obst_width, obst_height, color=GREY)
initial_surfaces[body] = floor
pillars = list(initial_surfaces)
obstacles = walls + pillars
initial_conf = np.array([+floor_extent/3, -floor_extent/3, 3*PI/4])
goal_conf = -initial_conf
robot = load_pybullet(TURTLEBOT_URDF, fixed_base=True, merge=True, sat=False)
base_joints = joints_from_names(robot, BASE_JOINTS)
# base_link = child_link_from_joint(base_joints[-1])
base_link = link_from_name(robot, BASE_LINK_NAME)
set_all_color(robot, BLUE)
dump_body(robot)
set_point(robot, Point(z=stable_z(robot, floor)))
#set_point(robot, Point(z=base_aligned_z(robot)))
draw_pose(Pose(), parent=robot, parent_link=base_link, length=0.5)
set_joint_positions(robot, base_joints, initial_conf)
sample_placements(initial_surfaces, obstacles=[robot] + walls,
savers=[BodySaver(robot, joints=base_joints, positions=goal_conf)],
min_distances=10e-2)
# The first calls appear to be the slowest
# times = []
# for body1, body2 in combinations(pillars, r=2):
# start_time = time.time()
# colliding = pairwise_collision(body1, body2)
# runtime = elapsed_time(start_time)
# print(colliding, runtime)
# times.append(runtime)
# print(times)
return robot, base_limits, goal_conf, obstacles
##################################################
def compute_cost(robot, joints, path, resolutions=None):
if path is None:
return INF
distance_fn = get_distance_fn(robot, joints, weights=resolutions) # TODO: get_duration_fn
return sum(distance_fn(*pair) for pair in get_pairs(path))
def get_curve_collision_fn(robot, joints, custom_limits={}, resolutions=None, v_max=None, a_max=None, **kwargs):
collision_fn = get_collision_fn(robot, joints, custom_limits=custom_limits, **kwargs)
limits_fn = get_limits_fn(robot, joints, custom_limits)
def curve_collision_fn(curve, t0, t1):
if curve is None:
return True
# TODO: can exactly compute limit violations
# if not check_spline(curve, v_max=max_velocities, a_max=None, verbose=False,
# #start_t=t0, end_t=t1,
# ):
# return True
_, samples = time_discretize_curve(curve, verbose=False,
#start_t=t0, end_t=t1,
resolution=resolutions,
#max_velocities=v_max,
)
if any(map(limits_fn, samples)):
return True
if any(map(collision_fn, default_selector(samples))):
return True
return False
return curve_collision_fn
##################################################
def mpc(x0, v0, curve, dt_max=0.5, max_time=INF, max_iterations=INF, v_max=None, **kwargs):
assert (max_time < INF) or (max_iterations < INF)
from scipy.interpolate import CubicHermiteSpline
start_time = time.time()
best_cost, best_spline = INF, None
for iteration in irange(max_iterations):
if elapsed_time(start_time) >= max_time:
break
t1 = random.uniform(curve.x[0], curve.x[-1])
future = (curve.x[-1] - t1) # TODO: weighted
if future >= best_cost:
continue
x1 = curve(t1)
if (v_max is not None) and (max((x1 - x0) / v_max) > dt_max):
continue
# if quickest_inf_accel(x0, x1, v_max=v_max) > dt_max:
# continue
v1 = curve(t1, nu=1)
#dt = dt_max
dt = random.uniform(0, dt_max)
times = [0., dt]
positions = [x0, x1]
velocities = [v0, v1]
spline = CubicHermiteSpline(times, positions, dydx=velocities)
if not check_spline(spline, **kwargs):
continue
# TODO: optimize to find the closest on the path within a range
cost = future + (spline.x[-1] - spline.x[0])
if cost < best_cost:
best_cost, best_spline = cost, spline
print('Iteration: {} | Cost: {:.3f} | T: {:.3f} | Time: {:.3f}'.format(
iteration, cost, t1, elapsed_time(start_time)))
print(best_cost, t1, elapsed_time(start_time))
return best_cost, best_spline
def find_closest(x0, curve, t_range=None, max_time=INF, max_iterations=INF, distance_fn=None, verbose=False):
assert (max_time < INF) or (max_iterations < INF)
if t_range is None:
t_range = Interval(curve.x[0], curve.x[-1])
t_range = Interval(max(t_range[0], curve.x[0]), min(curve.x[-1], t_range[-1]))
if distance_fn is None:
distance_fn = get_distance
start_time = time.time()
closest_dist, closest_t = INF, None
for iteration in irange(max_iterations):
if elapsed_time(start_time) >= max_time:
break
t = random.uniform(*t_range) # TODO: halton
x = curve(t)
dist = distance_fn(x0, x)
if dist < closest_dist:
closest_dist, closest_t = dist, t
if verbose:
print('Iteration: {} | Dist: {:.3f} | T: {:.3f} | Time: {:.3f}'.format(
iteration, closest_dist, t, elapsed_time(start_time)))
return closest_dist, closest_t
##################################################
def max_velocity_control_joints(robot, joints, positions=None, velocities=None, max_velocities=None):
if velocities is None:
velocities = np.zeros(len(joints))
if max_velocities is None:
max_velocities = get_max_velocities(robot, joints)
for idx, joint in enumerate(joints):
if positions is not None:
control_joint(robot, joint=joint, position=positions[idx],
# velocity=0.,
velocity=velocities[idx], # if abs(velocities[idx]) > 1e-3 else 0,
# max_velocity=abs(velocities[idx]),
max_velocity=abs(max_velocities[idx]), # TODO: max_velocity and velocity==0 cause issues
position_gain=10, velocity_scale=None, max_force=None)
else:
velocity_control_joint(robot, joint=joint, velocity=velocities[idx],
max_velocity=abs(max_velocities[idx]),
position_gain=None, velocity_scale=None, max_force=None)
def control_state(robot, joints, target_positions, target_velocities=None, position_tol=INF, velocity_tol=INF,
max_velocities=None, verbose=True): # TODO: max_accelerations
if target_velocities is None:
target_velocities = np.zeros(len(joints))
if max_velocities is None:
max_velocities = get_max_velocities(robot, joints)
assert (max_velocities > 0).all()
max_velocity_control_joints(robot, joints, positions=target_positions, velocities=target_velocities,
max_velocities=max_velocities)
for i in irange(INF):
current_positions = np.array(get_joint_positions(robot, joints))
position_error = get_distance(current_positions, target_positions, norm=INF)
current_velocities = np.array(get_joint_velocities(robot, joints))
velocity_error = get_distance(current_velocities, target_velocities, norm=INF)
if verbose:
# print('Positions: {} | Target positions: {}'.format(current_positions.round(N_DIGITS), target_positions.round(N_DIGITS)))
# print('Velocities: {} | Target velocities: {}'.format(current_velocities.round(N_DIGITS), target_velocities.round(N_DIGITS)))
print('Step: {} | Position error: {:.3f}/{:.3f} | Velocity error: {:.3f}/{:.3f}'.format(
i, position_error, position_tol, velocity_error, velocity_tol))
# TODO: draw the tolerance interval
if (position_error <= position_tol) and (velocity_error <= velocity_tol):
return # TODO: declare success or failure by yielding or throwing an exception
yield i
def follow_curve(robot, joints, curve, goal_t=None, time_step=None, max_velocities=MAX_VELOCITIES, **kwargs):
if goal_t is None:
goal_t = curve.x[-1]
if time_step is None:
time_step = 10*get_time_step()
#distance_fn = get_distance_fn(robot, joints, weights=None, norm=2)
distance_fn = get_duration_fn(robot, joints, velocities=max_velocities, norm=INF) # get_distance
positions = np.array(get_joint_positions(robot, joints))
closest_dist, closest_t = find_closest(positions, curve, t_range=(curve.x[0], goal_t), max_time=1e-1,
max_iterations=INF, distance_fn=distance_fn, verbose=True)
print('Closest dist: {:.3f} | Closest time: {:.3f}'.format(closest_dist, closest_t))
target_t = closest_t
# TODO: condition based on closest_dist
while True:
print('\nTarget time: {:.3f} | Goal time: {}'.format(target_t, goal_t))
target_positions = curve(target_t)
target_velocities = curve(target_t, nu=1) # TODO: draw the velocity
#print('Positions: {} | Velocities: {}'.format(target_positions, target_velocities))
handles = draw_waypoint(target_positions)
is_goal = (target_t == goal_t)
position_tol = 1e-2 if is_goal else 1e-2
for output in control_state(robot, joints, target_positions=target_positions, target_velocities=target_velocities,
position_tol=position_tol, velocity_tol=INF, max_velocities=max_velocities, **kwargs):
yield output
remove_handles(handles)
target_t = min(goal_t, target_t + time_step)
if is_goal:
break
##################################################
def follow_curve_old(robot, joints, curve, goal_t=None):
# TODO: unify with /Users/caelan/Programs/open-world-tamp/open_world/simulation/control.py
if goal_t is None:
goal_t = curve.x[-1]
time_step = get_time_step()
target_step = 10*time_step
#distance_fn = get_distance_fn(robot, joints, weights=None, norm=2)
distance_fn = get_duration_fn(robot, joints, velocities=MAX_VELOCITIES, norm=INF)
for i in irange(INF):
# if (i % 10) != 0:
# continue
current_p = np.array(get_joint_positions(robot, joints))
current_v = np.array(get_joint_velocities(robot, joints))
goal_dist = distance_fn(current_p, curve(goal_t))
print('Positions: {} | Velocities: {} | Goal distance: {:.3f}'.format(
current_p.round(N_DIGITS), current_v.round(N_DIGITS), goal_dist))
if goal_dist < 1e-2:
return True
# _, connection = mpc(current_p, current_v, curve, v_max=MAX_VELOCITIES, a_max=MAX_ACCELERATIONS,
# dt_max=1e-1, max_time=1e-1)
# assert connection is not None
# target_t = 0.5*connection.x[-1]
# target_p = connection(target_t)
# target_v = connection(target_t, nu=1)
# #print(target_p)
closest_dist, closest_t = find_closest(current_p, curve, t_range=None, max_time=1e-2,
max_iterations=INF, distance_fn=distance_fn, verbose=True)
target_t = min(closest_t + target_step, curve.x[-1])
target_p = curve(target_t)
#target_v = curve(target_t, nu=1)
target_v = curve(closest_t, nu=1)
#target_v = MAX_VELOCITIES
#target_v = INF*np.zeros(len(joints))
handles = draw_waypoint(target_p)
#times, confs = time_discretize_curve(curve, verbose=False, resolution=resolutions) # max_velocities=v_max,
# set_joint_positions(robot, joints, target_p)
max_velocity_control_joints(robot, joints,
positions=target_p,
velocities=target_v,
max_velocities=MAX_VELOCITIES)
#next_t = closest_t + time_step
#next_p = current_p + current_v*time_step
yield target_t
actual_p = np.array(get_joint_positions(robot, joints))
actual_v = np.array(get_joint_velocities(robot, joints))
next_p = current_p + actual_v*time_step
print('Predicted: {} | Actual: {}'.format(next_p.round(N_DIGITS), actual_p.round(N_DIGITS)))
remove_handles(handles)
##################################################
def simulate_curve(robot, joints, curve):
#set_joint_positions(robot, joints, curve(random.uniform(curve.x[0], curve.x[-1])))
wait_if_gui(message='Begin?')
#controller = follow_curve_old(robot, joints, curve)
controller = follow_curve(robot, joints, curve)
for _ in controller:
step_simulation()
#wait_if_gui()
#wait_for_duration(duration=time_step)
#time.sleep(time_step)
wait_if_gui(message='Finish?')
def step_curve(robot, joints, path, step_size=None):
wait_if_gui(message='Begin?')
for i, conf in enumerate(path):
set_joint_positions(robot, joints, conf)
if step_size is None:
wait_if_gui(message='{}/{} Continue?'.format(i, len(path)))
else:
wait_for_duration(duration=step_size)
wait_if_gui(message='Finish?')
##################################################
def iterate_path(robot, joints, path, simulate=False, step_size=None, resolutions=None, smooth=False, **kwargs): # 1e-2 | None
if path is None:
return
saver = WorldSaver()
path = adjust_path(robot, joints, path)
with LockRenderer():
handles = draw_path(path)
waypoints = path
#waypoints = waypoints_from_path(path)
#curve = interpolate_path(robot, joints, waypoints, k=1, velocity_fraction=1) # TODO: no velocities in the URDF
if not smooth:
curve = retime_path(robot, joints, path, max_velocities=MAX_VELOCITIES, max_accelerations=MAX_ACCELERATIONS)
else:
curve = smooth_path(robot, joints, path, resolutions=resolutions,
max_velocities=MAX_VELOCITIES, max_accelerations=MAX_ACCELERATIONS, **kwargs)
path = discretize_curve(robot, joints, curve, resolutions=resolutions)
print('Steps: {} | Start: {:.3f} | End: {:.3f} | Knots: {}'.format(
len(path), curve.x[0], curve.x[-1], len(curve.x)))
with LockRenderer():
handles = draw_path(path)
if False:
# TODO: handle circular joints
#curve_collision_fn = lambda *args, **kwargs: False
curve_collision_fn = get_curve_collision_fn(robot, joints, resolutions=resolutions, **kwargs)
with LockRenderer():
with Profiler():
curve = smooth_curve(curve, MAX_VELOCITIES, MAX_ACCELERATIONS,
curve_collision_fn, max_time=5) #, curve_collision_fn=[])
saver.restore()
path = [conf for t, conf in sample_curve(curve, time_step=step_size)]
print('Steps: {} | Start: {:.3f} | End: {:.3f} | Knots: {}'.format(
len(path), curve.x[0], curve.x[-1], len(curve.x)))
with LockRenderer():
handles = draw_path(path)
if simulate:
simulate_curve(robot, joints, curve)
else:
path = [conf for t, conf in sample_curve(curve, time_step=step_size)]
step_curve(robot, joints, path, step_size=step_size)
##################################################
def test_aabb(robot):
base_link = link_from_name(robot, BASE_LINK_NAME)
region_aabb = AABB(lower=-np.ones(3), upper=+np.ones(3))
draw_aabb(region_aabb)
# bodies = get_bodies_in_region(region_aabb)
# print(len(bodies), bodies)
# for body in get_bodies():
# set_pose(body, Pose())
#step_simulation() # Need to call before get_bodies_in_region
#update_scene()
for i in range(3):
with timer(message='{:f}'):
bodies = get_bodies_in_region(region_aabb) # This does cache some info
print(i, len(bodies), bodies)
# https://github.com/bulletphysics/bullet3/search?q=broadphase
# https://github.com/bulletphysics/bullet3/search?p=1&q=getCachedOverlappingObjects&type=&utf8=%E2%9C%93
# https://andysomogyi.github.io/mechanica/bullet.html
# http://www.cs.kent.edu/~ruttan/GameEngines/lectures/Bullet_User_Manual
aabb = get_aabb(robot)
# aabb = get_subtree_aabb(robot, base_link)
print(aabb)
draw_aabb(aabb)
for link in [BASE_LINK, base_link]:
print(link, get_collision_data(robot, link), pairwise_link_collision(robot, link, robot, link))
def test_caching(robot, obstacles):
with timer(message='{:f}'):
#update_scene() # 5.19752502441e-05
step_simulation() # 0.000210046768188
with timer(message='{:f}'):
#print(get_aabb(robot, link=None, only_collision=True))
print(contact_collision()) # 2.50339508057e-05
for _ in range(3):
with timer(message='{:f}'):
#print(get_aabb(robot, link=None, only_collision=True)) # Recomputes each time
print(contact_collision()) # 1.69277191162e-05
print()
obstacle = obstacles[-1]
#for link in get_all_links(robot):
# set_collision_pair_mask(robot, obstacle, link1=link, enable=False) # Doesn't seem to affect pairwise_collision
with timer('{:f}'):
print(pairwise_collision(robot, obstacle)) # 0.000031
links = get_all_links(robot)
links = [link for link in get_all_links(robot) if can_collide(robot, link)]
#links = randomize(links)
with timer('{:f}'):
print(any(pairwise_collision(robot, obstacle, link1=link) for link in links # 0.000179
))
#if aabb_overlap(get_aabb(robot, link), get_aabb(obstacles[-1]))))
#if can_collide(robot, link)))
with timer('{:f}'):
print(pairwise_collision(robot, obstacle))
##################################################
def main():
np.set_printoptions(precision=N_DIGITS, suppress=True, threshold=3) # , edgeitems=1) #, linewidth=1000)
parser = argparse.ArgumentParser()
parser.add_argument('-a', '--algorithm', default='rrt_connect', # choices=[],
help='The motion planning algorithm to use.')
parser.add_argument('-c', '--cfree', action='store_true',
help='When enabled, disables collision checking.')
# parser.add_argument('-p', '--problem', default='test_pour', choices=sorted(problem_fn_from_name),
# help='The name of the problem to solve.')
parser.add_argument('--holonomic', action='store_true', # '-h',
help='')
parser.add_argument('-l', '--lock', action='store_false',
help='')
parser.add_argument('-r', '--reversible', action='store_true',
help='')
parser.add_argument('-s', '--seed', default=None, type=int, # None | 1
help='The random seed to use.')
parser.add_argument('-n', '--num', default=10, type=int,
help='The number of obstacles.')
parser.add_argument('-o', '--orientation', action='store_true',
help='')
parser.add_argument('-v', '--viewer', action='store_false',
help='')
args = parser.parse_args()
connect(use_gui=args.viewer)
#set_aabb_buffer(buffer=1e-3)
#set_separating_axis_collisions()
#seed = 0
#seed = time.time()
seed = args.seed
if seed is None:
seed = random.randint(0, 10**3-1)
print('Seed:', seed)
set_random_seed(seed=seed) # None: 2147483648 = 2**31
set_numpy_seed(seed=seed)
#print('Random seed:', get_random_seed(), random.random())
#print('Numpy seed:', get_numpy_seed(), np.random.random())
#########################
robot, base_limits, goal_conf, obstacles = problem1(n_obstacles=args.num)
custom_limits = create_custom_base_limits(robot, base_limits)
base_joints = joints_from_names(robot, BASE_JOINTS)
draw_base_limits(base_limits)
# draw_pose(get_link_pose(robot, base_link), length=0.5)
start_conf = get_joint_positions(robot, base_joints)
for conf in [start_conf, goal_conf]:
draw_waypoint(conf)
#resolutions = None
#resolutions = np.array([0.05, 0.05, math.radians(10)])
plan_joints = base_joints[:2] if not args.orientation else base_joints
d = len(plan_joints)
holonomic = args.holonomic or (d != 3)
resolutions = 1.*DEFAULT_RESOLUTION*np.ones(d) # TODO: default resolutions, velocities, accelerations fns
#weights = np.reciprocal(resolutions)
weights = np.array([1, 1, 1e-3])[:d]
cost_fn = get_acceleration_fn(robot, plan_joints, max_velocities=MAX_VELOCITIES[:d],
max_accelerations=MAX_ACCELERATIONS[:d])
# TODO: check that taking shortest turning direction (reversible affecting?)
if args.cfree:
obstacles = []
# for obstacle in obstacles:
# draw_aabb(get_aabb(obstacle)) # Updates automatically
#set_all_static() # Doesn't seem to affect
#test_aabb(robot)
#test_caching(robot, obstacles)
#return
#########################
# TODO: filter if straight-line path is feasible
saver = WorldSaver()
wait_for_duration(duration=1e-2)
start_time = time.time()
with LockRenderer(lock=args.lock):
with Profiler(field='cumtime', num=25): # tottime | cumtime | None
# TODO: draw the search tree
path = plan_base_joint_motion(
robot, plan_joints, goal_conf[:d],
holonomic=holonomic, reversible=args.reversible,
obstacles=obstacles, self_collisions=False, custom_limits=custom_limits,
use_aabb=True, cache=True, max_distance=MIN_PROXIMITY,
resolutions=resolutions, weights=weights, # TODO: use KDTrees
circular={2: UNBOUNDED_LIMITS if holonomic else CIRCULAR_LIMITS},
cost_fn=cost_fn,
algorithm=args.algorithm, verbose=True,
restarts=5, max_iterations=50,
smooth=None if holonomic else 100, smooth_time=1, # None | 100 | INF
)
saver.restore()
# TODO: draw ROADMAPS
#wait_for_duration(duration=1e-3)
#########################
solved = path is not None
length = INF if path is None else len(path)
cost = compute_cost(robot, base_joints, path, resolutions=resolutions[:len(plan_joints)])
print('Solved: {} | Length: {} | Cost: {:.3f} | Runtime: {:.3f} sec'.format(
solved, length, cost, elapsed_time(start_time)))
if path is None:
wait_if_gui()
disconnect()
return
# for i, conf in enumerate(path):
# set_joint_positions(robot, plan_joints, conf)
# wait_if_gui('{}/{}) Continue?'.format(i + 1, len(path)))
path = extract_full_path(robot, plan_joints, path, base_joints)
with LockRenderer():
draw_last_roadmap(robot, base_joints)
# for i, conf in enumerate(path):
# set_joint_positions(robot, base_joints, conf)
# wait_if_gui('{}/{}) Continue?'.format(i+1, len(path)))
iterate_path(robot, base_joints, path, step_size=2e-2, smooth=holonomic, custom_limits=custom_limits,
resolutions=DEFAULT_RESOLUTION*np.ones(3), # resolutions
obstacles=obstacles, self_collisions=False, max_distance=MIN_PROXIMITY)
disconnect()
if __name__ == '__main__':
main()