-
Notifications
You must be signed in to change notification settings - Fork 18
/
SC2_PCR.py
394 lines (348 loc) · 18.4 KB
/
SC2_PCR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import torch
from common import knn, rigid_transform_3d
from utils.SE3 import transform
import numpy as np
class Matcher():
def __init__(self,
inlier_threshold=0.10,
num_node='all',
use_mutual=True,
d_thre=0.1,
num_iterations=10,
ratio=0.2,
nms_radius=0.1,
max_points=8000,
k1=30,
k2=20,
select_scene=None,
):
self.inlier_threshold = inlier_threshold
self.num_node = num_node
self.use_mutual = use_mutual
self.d_thre = d_thre
self.num_iterations = num_iterations # maximum iteration of power iteration algorithm
self.ratio = ratio # the maximum ratio of seeds.
self.max_points = max_points
self.nms_radius = nms_radius
self.k1 = k1
self.k2 = k2
def pick_seeds(self, dists, scores, R, max_num):
"""
Select seeding points using Non Maximum Suppression. (here we only support bs=1)
Input:
- dists: [bs, num_corr, num_corr] src keypoints distance matrix
- scores: [bs, num_corr] initial confidence of each correspondence
- R: float radius of nms
- max_num: int maximum number of returned seeds
Output:
- picked_seeds: [bs, num_seeds] the index to the seeding correspondences
"""
assert scores.shape[0] == 1
# parallel Non Maximum Suppression (more efficient)
score_relation = scores.T >= scores # [num_corr, num_corr], save the relation of leading_eig
# score_relation[dists[0] >= R] = 1 # mask out the non-neighborhood node
score_relation = score_relation.bool() | (dists[0] >= R).bool()
is_local_max = score_relation.min(-1)[0].float()
score_local_max = scores * is_local_max
sorted_score = torch.argsort(score_local_max, dim=1, descending=True)
# max_num = scores.shape[1]
return_idx = sorted_score[:, 0: max_num].detach()
return return_idx
def cal_seed_trans(self, seeds, SC2_measure, src_keypts, tgt_keypts):
"""
Calculate the transformation for each seeding correspondences.
Input:
- seeds: [bs, num_seeds] the index to the seeding correspondence
- SC2_measure: [bs, num_corr, num_channels]
- src_keypts: [bs, num_corr, 3]
- tgt_keypts: [bs, num_corr, 3]
Output: leading eigenvector
- final_trans: [bs, 4, 4] best transformation matrix (after post refinement) for each batch.
"""
bs, num_corr, num_channels = SC2_measure.shape[0], SC2_measure.shape[1], SC2_measure.shape[2]
k1 = self.k1
k2 = self.k2
if k1 > num_channels:
k1 = 4
k2 = 4
#################################
# The first stage consensus set sampling
# Finding the k1 nearest neighbors around each seed
#################################
sorted_score = torch.argsort(SC2_measure, dim=2, descending=True)
knn_idx = sorted_score[:, :, 0: k1]
sorted_value, _ = torch.sort(SC2_measure, dim=2, descending=True)
idx_tmp = knn_idx.contiguous().view([bs, -1])
idx_tmp = idx_tmp[:, :, None]
idx_tmp = idx_tmp.expand(-1, -1, 3)
#################################
# construct the local SC2 measure of each consensus subset obtained in the first stage.
#################################
src_knn = src_keypts.gather(dim=1, index=idx_tmp).view([bs, -1, k1, 3]) # [bs, num_seeds, k, 3]
tgt_knn = tgt_keypts.gather(dim=1, index=idx_tmp).view([bs, -1, k1, 3])
src_dist = ((src_knn[:, :, :, None, :] - src_knn[:, :, None, :, :]) ** 2).sum(-1) ** 0.5
tgt_dist = ((tgt_knn[:, :, :, None, :] - tgt_knn[:, :, None, :, :]) ** 2).sum(-1) ** 0.5
cross_dist = torch.abs(src_dist - tgt_dist)
local_hard_SC_measure = (cross_dist < self.d_thre).float()
local_SC2_measure = torch.matmul(local_hard_SC_measure[:, :, :1, :], local_hard_SC_measure)
#################################
# perform second stage consensus set sampling
#################################
sorted_score = torch.argsort(local_SC2_measure, dim=3, descending=True)
knn_idx_fine = sorted_score[:, :, :, 0: k2]
#################################
# construct the soft SC2 matrix of the consensus set
#################################
num = knn_idx_fine.shape[1]
knn_idx_fine = knn_idx_fine.contiguous().view([bs, num, -1])[:, :, :, None]
knn_idx_fine = knn_idx_fine.expand(-1, -1, -1, 3)
src_knn_fine = src_knn.gather(dim=2, index=knn_idx_fine).view([bs, -1, k2, 3]) # [bs, num_seeds, k, 3]
tgt_knn_fine = tgt_knn.gather(dim=2, index=knn_idx_fine).view([bs, -1, k2, 3])
src_dist = ((src_knn_fine[:, :, :, None, :] - src_knn_fine[:, :, None, :, :]) ** 2).sum(-1) ** 0.5
tgt_dist = ((tgt_knn_fine[:, :, :, None, :] - tgt_knn_fine[:, :, None, :, :]) ** 2).sum(-1) ** 0.5
cross_dist = torch.abs(src_dist - tgt_dist)
local_hard_measure = (cross_dist < self.d_thre * 2).float()
local_SC2_measure = torch.matmul(local_hard_measure, local_hard_measure) / k2
local_SC_measure = torch.clamp(1 - cross_dist ** 2 / self.d_thre ** 2, min=0)
# local_SC2_measure = local_SC_measure * local_SC2_measure
local_SC2_measure = local_SC_measure
local_SC2_measure = local_SC2_measure.view([-1, k2, k2])
#################################
# Power iteratation to get the inlier probability
#################################
local_SC2_measure[:, torch.arange(local_SC2_measure.shape[1]), torch.arange(local_SC2_measure.shape[1])] = 0
total_weight = self.cal_leading_eigenvector(local_SC2_measure, method='power')
total_weight = total_weight.view([bs, -1, k2])
total_weight = total_weight / (torch.sum(total_weight, dim=-1, keepdim=True) + 1e-6)
#################################
# calculate the transformation by weighted least-squares for each subsets in parallel
#################################
total_weight = total_weight.view([-1, k2])
src_knn = src_knn_fine
tgt_knn = tgt_knn_fine
src_knn, tgt_knn = src_knn.view([-1, k2, 3]), tgt_knn.view([-1, k2, 3])
#################################
# compute the rigid transformation for each seed by the weighted SVD
#################################
seedwise_trans = rigid_transform_3d(src_knn, tgt_knn, total_weight)
seedwise_trans = seedwise_trans.view([bs, -1, 4, 4])
#################################
# calculate the inlier number for each hypothesis, and find the best transformation for each point cloud pair
#################################
pred_position = torch.einsum('bsnm,bmk->bsnk', seedwise_trans[:, :, :3, :3],
src_keypts.permute(0, 2, 1)) + seedwise_trans[:, :, :3,
3:4] # [bs, num_seeds, num_corr, 3]
#################################
# calculate the inlier number for each hypothesis, and find the best transformation for each point cloud pair
#################################
pred_position = pred_position.permute(0, 1, 3, 2)
L2_dis = torch.norm(pred_position - tgt_keypts[:, None, :, :], dim=-1) # [bs, num_seeds, num_corr]
seedwise_fitness = torch.sum((L2_dis < self.inlier_threshold).float(), dim=-1) # [bs, num_seeds]
batch_best_guess = seedwise_fitness.argmax(dim=1)
best_guess_ratio = seedwise_fitness[0, batch_best_guess]
final_trans = seedwise_trans.gather(dim=1,index=batch_best_guess[:, None, None, None].expand(-1, -1, 4, 4)).squeeze(1)
return final_trans
def cal_leading_eigenvector(self, M, method='power'):
"""
Calculate the leading eigenvector using power iteration algorithm or torch.symeig
Input:
- M: [bs, num_corr, num_corr] the compatibility matrix
- method: select different method for calculating the learding eigenvector.
Output:
- solution: [bs, num_corr] leading eigenvector
"""
if method == 'power':
# power iteration algorithm
leading_eig = torch.ones_like(M[:, :, 0:1])
leading_eig_last = leading_eig
for i in range(self.num_iterations):
leading_eig = torch.bmm(M, leading_eig)
leading_eig = leading_eig / (torch.norm(leading_eig, dim=1, keepdim=True) + 1e-6)
if torch.allclose(leading_eig, leading_eig_last):
break
leading_eig_last = leading_eig
leading_eig = leading_eig.squeeze(-1)
return leading_eig
elif method == 'eig': # cause NaN during back-prop
e, v = torch.symeig(M, eigenvectors=True)
leading_eig = v[:, :, -1]
return leading_eig
else:
exit(-1)
def cal_confidence(self, M, leading_eig, method='eig_value'):
"""
Calculate the confidence of the spectral matching solution based on spectral analysis.
Input:
- M: [bs, num_corr, num_corr] the compatibility matrix
- leading_eig [bs, num_corr] the leading eigenvector of matrix M
Output:
- confidence
"""
if method == 'eig_value':
# max eigenvalue as the confidence (Rayleigh quotient)
max_eig_value = (leading_eig[:, None, :] @ M @ leading_eig[:, :, None]) / (
leading_eig[:, None, :] @ leading_eig[:, :, None])
confidence = max_eig_value.squeeze(-1)
return confidence
elif method == 'eig_value_ratio':
# max eigenvalue / second max eigenvalue as the confidence
max_eig_value = (leading_eig[:, None, :] @ M @ leading_eig[:, :, None]) / (
leading_eig[:, None, :] @ leading_eig[:, :, None])
# compute the second largest eigen-value
B = M - max_eig_value * leading_eig[:, :, None] @ leading_eig[:, None, :]
solution = torch.ones_like(B[:, :, 0:1])
for i in range(self.num_iterations):
solution = torch.bmm(B, solution)
solution = solution / (torch.norm(solution, dim=1, keepdim=True) + 1e-6)
solution = solution.squeeze(-1)
second_eig = solution
second_eig_value = (second_eig[:, None, :] @ B @ second_eig[:, :, None]) / (
second_eig[:, None, :] @ second_eig[:, :, None])
confidence = max_eig_value / second_eig_value
return confidence
elif method == 'xMx':
# max xMx as the confidence (x is the binary solution)
# rank = torch.argsort(leading_eig, dim=1, descending=True)[:, 0:int(M.shape[1]*self.ratio)]
# binary_sol = torch.zeros_like(leading_eig)
# binary_sol[0, rank[0]] = 1
confidence = leading_eig[:, None, :] @ M @ leading_eig[:, :, None]
confidence = confidence.squeeze(-1) / M.shape[1]
return confidence
def post_refinement(self, initial_trans, src_keypts, tgt_keypts, it_num, weights=None):
"""
Perform post refinement using the initial transformation matrix, only adopted during testing.
Input
- initial_trans: [bs, 4, 4]
- src_keypts: [bs, num_corr, 3]
- tgt_keypts: [bs, num_corr, 3]
- weights: [bs, num_corr]
Output:
- final_trans: [bs, 4, 4]
"""
assert initial_trans.shape[0] == 1
inlier_threshold = 1.2
# inlier_threshold_list = [self.inlier_threshold] * it_num
if self.inlier_threshold == 0.10: # for 3DMatch
inlier_threshold_list = [0.10] * it_num
else: # for KITTI
inlier_threshold_list = [1.2] * it_num
previous_inlier_num = 0
for inlier_threshold in inlier_threshold_list:
warped_src_keypts = transform(src_keypts, initial_trans)
L2_dis = torch.norm(warped_src_keypts - tgt_keypts, dim=-1)
pred_inlier = (L2_dis < inlier_threshold)[0] # assume bs = 1
inlier_num = torch.sum(pred_inlier)
if abs(int(inlier_num - previous_inlier_num)) < 1:
break
else:
previous_inlier_num = inlier_num
initial_trans = rigid_transform_3d(
A=src_keypts[:, pred_inlier, :],
B=tgt_keypts[:, pred_inlier, :],
## https://link.springer.com/article/10.1007/s10589-014-9643-2
# weights=None,
weights=1 / (1 + (L2_dis / inlier_threshold) ** 2)[:, pred_inlier],
# weights=((1-L2_dis/inlier_threshold)**2)[:, pred_inlier]
)
return initial_trans
def match_pair(self, src_keypts, tgt_keypts, src_features, tgt_features):
N_src = src_features.shape[1]
N_tgt = tgt_features.shape[1]
# use all point or sample points.
if self.num_node == 'all':
src_sel_ind = np.arange(N_src)
tgt_sel_ind = np.arange(N_tgt)
else:
src_sel_ind = np.random.choice(N_src, self.num_node)
tgt_sel_ind = np.random.choice(N_tgt, self.num_node)
src_desc = src_features[:, src_sel_ind, :]
tgt_desc = tgt_features[:, tgt_sel_ind, :]
src_keypts = src_keypts[:, src_sel_ind, :]
tgt_keypts = tgt_keypts[:, tgt_sel_ind, :]
# match points in feature space.
distance = torch.sqrt(2 - 2 * (src_desc[0] @ tgt_desc[0].T) + 1e-6)
distance = distance.unsqueeze(0)
source_idx = torch.argmin(distance[0], dim=1)
corr = torch.cat([torch.arange(source_idx.shape[0])[:, None].cuda(), source_idx[:, None]], dim=-1)
# generate correspondences
src_keypts_corr = src_keypts[:, corr[:, 0]]
tgt_keypts_corr = tgt_keypts[:, corr[:, 1]]
return src_keypts_corr, tgt_keypts_corr
def SC2_PCR(self, src_keypts, tgt_keypts):
"""
Input:
- src_keypts: [bs, num_corr, 3]
- tgt_keypts: [bs, num_corr, 3]
Output:
- pred_trans: [bs, 4, 4], the predicted transformation matrix.
- pred_labels: [bs, num_corr], the predicted inlier/outlier label (0,1), for classification loss calculation.
"""
bs, num_corr = src_keypts.shape[0], tgt_keypts.shape[1]
#################################
# downsample points
#################################
if num_corr > self.max_points:
src_keypts = src_keypts[:, :self.max_points, :]
tgt_keypts = tgt_keypts[:, :self.max_points, :]
num_corr = self.max_points
#################################
# compute cross dist
#################################
src_dist = torch.norm((src_keypts[:, :, None, :] - src_keypts[:, None, :, :]), dim=-1)
target_dist = torch.norm((tgt_keypts[:, :, None, :] - tgt_keypts[:, None, :, :]), dim=-1)
cross_dist = torch.abs(src_dist - target_dist)
#################################
# compute first order measure
#################################
SC_dist_thre = self.d_thre
SC_measure = torch.clamp(1.0 - cross_dist ** 2 / SC_dist_thre ** 2, min=0)
hard_SC_measure = (cross_dist < SC_dist_thre).float()
#################################
# select reliable seed correspondences
#################################
confidence = self.cal_leading_eigenvector(SC_measure, method='power')
seeds = self.pick_seeds(src_dist, confidence, R=self.nms_radius, max_num=int(num_corr * self.ratio))
#################################
# compute second order measure
#################################
SC2_dist_thre = self.d_thre / 2
hard_SC_measure_tight = (cross_dist < SC2_dist_thre).float()
seed_hard_SC_measure = hard_SC_measure.gather(dim=1,
index=seeds[:, :, None].expand(-1, -1, num_corr))
seed_hard_SC_measure_tight = hard_SC_measure_tight.gather(dim=1,
index=seeds[:, :, None].expand(-1, -1, num_corr))
SC2_measure = torch.matmul(seed_hard_SC_measure_tight, hard_SC_measure_tight) * seed_hard_SC_measure
#################################
# compute the seed-wise transformations and select the best one
#################################
final_trans = self.cal_seed_trans(seeds, SC2_measure, src_keypts, tgt_keypts)
#################################
# refine the result by recomputing the transformation over the whole set
#################################
final_trans = self.post_refinement(final_trans, src_keypts, tgt_keypts, 20)
return final_trans
def estimator(self, src_keypts, tgt_keypts, src_features, tgt_features):
"""
Input:
- src_keypts: [bs, num_corr, 3]
- tgt_keypts: [bs, num_corr, 3]
- src_features: [bs, num_corr, C]
- tgt_features: [bs, num_corr, C]
Output:
- pred_trans: [bs, 4, 4], the predicted transformation matrix
- pred_trans: [bs, num_corr], the predicted inlier/outlier label (0,1)
- src_keypts_corr: [bs, num_corr, 3], the source points in the matched correspondences
- tgt_keypts_corr: [bs, num_corr, 3], the target points in the matched correspondences
"""
#################################
# generate coarse correspondences
#################################
src_keypts_corr, tgt_keypts_corr = self.match_pair(src_keypts, tgt_keypts, src_features, tgt_features)
#################################
# use the proposed SC2-PCR to estimate the rigid transformation
#################################
pred_trans = self.SC2_PCR(src_keypts_corr, tgt_keypts_corr)
frag1_warp = transform(src_keypts_corr, pred_trans)
distance = torch.sum((frag1_warp - tgt_keypts_corr) ** 2, dim=-1) ** 0.5
pred_labels = (distance < self.inlier_threshold).float()
return pred_trans, pred_labels, src_keypts_corr, tgt_keypts_corr