Official implementation of CVPR 2024 highlight paper: "Real-Time Simulated Avatar from Head-Mounted Sensors".
[August 20, 2024] Data released!
[August 5, 2024] Evaluation code released!
[May 11, 2024] Skeleton code Released!
- Create new conda environment and install pytroch:
conda create -n isaac python=3.8
conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia
pip install -r requirement.txt
-
Download and setup Isaac Gym.
-
[Optional if only inference] Download SMPL paramters from SMPL. Put them in the
data/smpl
folder, unzip them into 'data/smpl' folder. Please download the v1.1.0 version, which contains the neutral humanoid. Rename the filesbasicmodel_neutral_lbs_10_207_0_v1.1.0
,basicmodel_m_lbs_10_207_0_v1.1.0.pkl
,basicmodel_f_lbs_10_207_0_v1.1.0.pkl
toSMPL_NEUTRAL.pkl
,SMPL_MALE.pkl
andSMPL_FEMALE.pkl
. Rename The file structure should look like this:
|-- data
|-- smpl
|-- SMPL_FEMALE.pkl
|-- SMPL_NEUTRAL.pkl
|-- SMPL_MALE.pkl
Processed Aria sequences can be found here for training and evaluation: [Train] [Test]
Processed real-world sequences can be found here for evaluations: [Test]
Processed synthetic sequences can be found here for training: [Train] [Test]
After downloading the data, you can split the data into training and testing data using the following command:
python scripts/data_process/split_data.py --data_dir [path to downloaded synethic data]
python scripts/data_process/split_data.py --data_dir [path to downloaded aria data]
Evaluate Aria models:
python phc/run_hydra.py exp_name=simxr_aria env=env_simxr_aria learning=im_simxr env.motion_file=sample_data/Apartment_release_decoration_skeleton_seq139_1WM103600M1292_0_2766_0_395.pkl robot.box_body=False env.cycle_motion=False has_eval=True real_traj=True epoch=-1 test=True env.num_envs=1 headless=False no_virtual_display=True
Evaluate Quest 2 models using real-world sequences:
python phc/run_hydra.py exp_name=simxr_quest env=env_simxr_quest learning=im_simxr env.motion_file=sample_data/capture00.pkl robot=quest_humanoid env.cycle_motion=False has_eval=True real_traj=True epoch=-1 test=True env.num_envs=1 headless=False no_virtual_display=True
Evaluate Quest 2 motion imitator
python phc/run_hydra.py exp_name=phc_prim_quest env=env_im_quest learning=im_quest env.motion_file=sample_data/capture00.pkl robot=quest_humanoid env.cycle_motion=False has_eval=True epoch=-1 test=True env.num_envs=1 headless=False no_virtual_display=True
Train Aria models:
python phc/run_hydra.py exp_name=simxr_aria env=env_simxr_aria learning=im_simxr env.motion_file=[Inerst Motion Data file or folder] robot.box_body=False
Train Quest 2 models:
python phc/run_hydra.py exp_name=simxr_quest env=env_simxr_quest learning=im_simxr env.motion_file=[insert synthetic data file or folder] robot=quest_humanoid
If you find this work useful for your research, please cite our paper:
@InProceedings{Luo_2024_CVPR,
author = {Luo, Zhengyi and Cao, Jinkun and Khirodkar, Rawal and Winkler, Alexander and Kitani, Kris and Xu, Weipeng},
title = {Real-Time Simulated Avatar from Head-Mounted Sensors},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {571-581}
}
Also consider citing these prior works that are used in this project:
@inproceedings{Luo2023PerpetualHC,
author={Zhengyi Luo and Jinkun Cao and Alexander W. Winkler and Kris Kitani and Weipeng Xu},
title={Perpetual Humanoid Control for Real-time Simulated Avatars},
booktitle={International Conference on Computer Vision (ICCV)},
year={2023}
}
@inproceedings{rempeluo2023tracepace,
author={Rempe, Davis and Luo, Zhengyi and Peng, Xue Bin and Yuan, Ye and Kitani, Kris and Kreis, Karsten and Fidler, Sanja and Litany, Or},
title={Trace and Pace: Controllable Pedestrian Animation via Guided Trajectory Diffusion},
booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2023}
}
@inproceedings{Luo2022EmbodiedSH,
title={Embodied Scene-aware Human Pose Estimation},
author={Zhengyi Luo and Shun Iwase and Ye Yuan and Kris Kitani},
booktitle={Advances in Neural Information Processing Systems},
year={2022}
}
@inproceedings{Luo2021DynamicsRegulatedKP,
title={Dynamics-Regulated Kinematic Policy for Egocentric Pose Estimation},
author={Zhengyi Luo and Ryo Hachiuma and Ye Yuan and Kris Kitani},
booktitle={Advances in Neural Information Processing Systems},
year={2021}
}
This repository is built on top of the following amazing repositories:
- Main code framework is from: IsaacGymEnvs
- Main code framework is from: PHC
- SMPL models and layer is from: SMPL-X model
Please follow the lisence of the above repositories for usage.