Skip to content

Official Implementation of the CVPR 2024 highlight paper: Real-Time Simulated Avatar from Head-Mounted Sensors

Notifications You must be signed in to change notification settings

ZhengyiLuo/SimXR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Real-Time Simulated Avatar from Head-Mounted Sensors

Official implementation of CVPR 2024 highlight paper: "Real-Time Simulated Avatar from Head-Mounted Sensors".

[paper] [website]

News 🚩

[August 20, 2024] Data released!

[August 5, 2024] Evaluation code released!

[May 11, 2024] Skeleton code Released!

Dependencies

  1. Create new conda environment and install pytroch:
conda create -n isaac python=3.8
conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia
pip install -r requirement.txt
  1. Download and setup Isaac Gym.

  2. [Optional if only inference] Download SMPL paramters from SMPL. Put them in the data/smpl folder, unzip them into 'data/smpl' folder. Please download the v1.1.0 version, which contains the neutral humanoid. Rename the files basicmodel_neutral_lbs_10_207_0_v1.1.0, basicmodel_m_lbs_10_207_0_v1.1.0.pkl, basicmodel_f_lbs_10_207_0_v1.1.0.pkl to SMPL_NEUTRAL.pkl, SMPL_MALE.pkl and SMPL_FEMALE.pkl. Rename The file structure should look like this:


|-- data
    |-- smpl
        |-- SMPL_FEMALE.pkl
        |-- SMPL_NEUTRAL.pkl
        |-- SMPL_MALE.pkl

Data

Aria

Processed Aria sequences can be found here for training and evaluation: [Train] [Test]

Quest 2

Processed real-world sequences can be found here for evaluations: [Test]

Processed synthetic sequences can be found here for training: [Train] [Test]

Splitting Data

After downloading the data, you can split the data into training and testing data using the following command:

python scripts/data_process/split_data.py  --data_dir [path to downloaded synethic data]
python scripts/data_process/split_data.py  --data_dir [path to downloaded aria data]

Evaluation

Evaluate Aria models:


python phc/run_hydra.py  exp_name=simxr_aria env=env_simxr_aria learning=im_simxr env.motion_file=sample_data/Apartment_release_decoration_skeleton_seq139_1WM103600M1292_0_2766_0_395.pkl  robot.box_body=False  env.cycle_motion=False has_eval=True real_traj=True  epoch=-1 test=True env.num_envs=1  headless=False no_virtual_display=True

Evaluate Quest 2 models using real-world sequences:

python phc/run_hydra.py  exp_name=simxr_quest env=env_simxr_quest learning=im_simxr env.motion_file=sample_data/capture00.pkl  robot=quest_humanoid  env.cycle_motion=False has_eval=True real_traj=True  epoch=-1 test=True env.num_envs=1  headless=False  no_virtual_display=True

Evaluate Quest 2 motion imitator

python phc/run_hydra.py  exp_name=phc_prim_quest env=env_im_quest learning=im_quest env.motion_file=sample_data/capture00.pkl  robot=quest_humanoid  env.cycle_motion=False has_eval=True  epoch=-1 test=True env.num_envs=1  headless=False  no_virtual_display=True

Training

Train Aria models:

python phc/run_hydra.py  exp_name=simxr_aria env=env_simxr_aria learning=im_simxr env.motion_file=[Inerst Motion Data file or folder]  robot.box_body=False

Train Quest 2 models:

python phc/run_hydra.py  exp_name=simxr_quest env=env_simxr_quest learning=im_simxr env.motion_file=[insert synthetic data file or folder]  robot=quest_humanoid

Citation

If you find this work useful for your research, please cite our paper:

@InProceedings{Luo_2024_CVPR,
    author    = {Luo, Zhengyi and Cao, Jinkun and Khirodkar, Rawal and Winkler, Alexander and Kitani, Kris and Xu, Weipeng},
    title     = {Real-Time Simulated Avatar from Head-Mounted Sensors},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2024},
    pages     = {571-581}
}   

Also consider citing these prior works that are used in this project:

@inproceedings{Luo2023PerpetualHC,
    author={Zhengyi Luo and Jinkun Cao and Alexander W. Winkler and Kris Kitani and Weipeng Xu},
    title={Perpetual Humanoid Control for Real-time Simulated Avatars},
    booktitle={International Conference on Computer Vision (ICCV)},
    year={2023}
}         

@inproceedings{rempeluo2023tracepace,
    author={Rempe, Davis and Luo, Zhengyi and Peng, Xue Bin and Yuan, Ye and Kitani, Kris and Kreis, Karsten and Fidler, Sanja and Litany, Or},
    title={Trace and Pace: Controllable Pedestrian Animation via Guided Trajectory Diffusion},
    booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2023}
}     

@inproceedings{Luo2022EmbodiedSH,
  title={Embodied Scene-aware Human Pose Estimation},
  author={Zhengyi Luo and Shun Iwase and Ye Yuan and Kris Kitani},
  booktitle={Advances in Neural Information Processing Systems},
  year={2022}
}

@inproceedings{Luo2021DynamicsRegulatedKP,
  title={Dynamics-Regulated Kinematic Policy for Egocentric Pose Estimation},
  author={Zhengyi Luo and Ryo Hachiuma and Ye Yuan and Kris Kitani},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}

References

This repository is built on top of the following amazing repositories:

Please follow the lisence of the above repositories for usage.

About

Official Implementation of the CVPR 2024 highlight paper: Real-Time Simulated Avatar from Head-Mounted Sensors

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages