forked from pyg-team/pytorch_geometric
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ogbn_products_gat.py
185 lines (144 loc) · 5.54 KB
/
ogbn_products_gat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Reaches around 0.7945 ± 0.0059 test accuracy.
import os.path as osp
import torch
import torch.nn.functional as F
from ogb.nodeproppred import Evaluator, PygNodePropPredDataset
from torch.nn import Linear as Lin
from tqdm import tqdm
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import GATConv
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
root = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'products')
dataset = PygNodePropPredDataset('ogbn-products', root)
split_idx = dataset.get_idx_split()
evaluator = Evaluator(name='ogbn-products')
data = dataset[0].to(device, 'x', 'y')
train_loader = NeighborLoader(
data,
input_nodes=split_idx['train'],
num_neighbors=[10, 10, 5],
batch_size=512,
shuffle=True,
num_workers=12,
persistent_workers=True,
)
subgraph_loader = NeighborLoader(
data,
input_nodes=None,
num_neighbors=[-1],
batch_size=2048,
num_workers=12,
persistent_workers=True,
)
class GAT(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
heads):
super().__init__()
self.num_layers = num_layers
self.convs = torch.nn.ModuleList()
self.convs.append(GATConv(dataset.num_features, hidden_channels,
heads))
for _ in range(num_layers - 2):
self.convs.append(
GATConv(heads * hidden_channels, hidden_channels, heads))
self.convs.append(
GATConv(heads * hidden_channels, out_channels, heads,
concat=False))
self.skips = torch.nn.ModuleList()
self.skips.append(Lin(dataset.num_features, hidden_channels * heads))
for _ in range(num_layers - 2):
self.skips.append(
Lin(hidden_channels * heads, hidden_channels * heads))
self.skips.append(Lin(hidden_channels * heads, out_channels))
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for skip in self.skips:
skip.reset_parameters()
def forward(self, x, edge_index):
for i, (conv, skip) in enumerate(zip(self.convs, self.skips)):
x = conv(x, edge_index) + skip(x)
if i != self.num_layers - 1:
x = F.elu(x)
x = F.dropout(x, p=0.5, training=self.training)
return x
def inference(self, x_all):
pbar = tqdm(total=x_all.size(0) * self.num_layers)
pbar.set_description('Evaluating')
# Compute representations of nodes layer by layer, using *all*
# available edges. This leads to faster computation in contrast to
# immediately computing the final representations of each batch.
for i in range(self.num_layers):
xs = []
for batch in subgraph_loader:
x = x_all[batch.n_id].to(device)
edge_index = batch.edge_index.to(device)
x = self.convs[i](x, edge_index) + self.skips[i](x)
x = x[:batch.batch_size]
if i != self.num_layers - 1:
x = F.elu(x)
xs.append(x.cpu())
pbar.update(batch.batch_size)
x_all = torch.cat(xs, dim=0)
pbar.close()
return x_all
model = GAT(dataset.num_features, 128, dataset.num_classes, num_layers=3,
heads=4).to(device)
def train(epoch):
model.train()
pbar = tqdm(total=split_idx['train'].size(0))
pbar.set_description(f'Epoch {epoch:02d}')
total_loss = total_correct = 0
for batch in train_loader:
optimizer.zero_grad()
out = model(batch.x, batch.edge_index.to(device))[:batch.batch_size]
y = batch.y[:batch.batch_size].squeeze()
loss = F.cross_entropy(out, y)
loss.backward()
optimizer.step()
total_loss += float(loss)
total_correct += int(out.argmax(dim=-1).eq(y).sum())
pbar.update(batch.batch_size)
pbar.close()
loss = total_loss / len(train_loader)
approx_acc = total_correct / split_idx['train'].size(0)
return loss, approx_acc
@torch.no_grad()
def test():
model.eval()
out = model.inference(data.x)
y_true = data.y.cpu()
y_pred = out.argmax(dim=-1, keepdim=True)
train_acc = evaluator.eval({
'y_true': y_true[split_idx['train']],
'y_pred': y_pred[split_idx['train']],
})['acc']
val_acc = evaluator.eval({
'y_true': y_true[split_idx['valid']],
'y_pred': y_pred[split_idx['valid']],
})['acc']
test_acc = evaluator.eval({
'y_true': y_true[split_idx['test']],
'y_pred': y_pred[split_idx['test']],
})['acc']
return train_acc, val_acc, test_acc
test_accs = []
for run in range(1, 11):
print(f'\nRun {run:02d}:\n')
model.reset_parameters()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
best_val_acc = final_test_acc = 0
for epoch in range(1, 101):
loss, acc = train(epoch)
print(f'Epoch {epoch:02d}, Loss: {loss:.4f}, Approx. Train: {acc:.4f}')
if epoch > 50 and epoch % 10 == 0:
train_acc, val_acc, test_acc = test()
print(f'Train: {train_acc:.4f}, Val: {val_acc:.4f}, '
f'Test: {test_acc:.4f}')
if val_acc > best_val_acc:
best_val_acc = val_acc
final_test_acc = test_acc
test_accs.append(final_test_acc)
test_acc = torch.tensor(test_accs)
print('============================')
print(f'Final Test: {test_acc.mean():.4f} ± {test_acc.std():.4f}')