-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathonnx_modifier.py
505 lines (436 loc) · 22.4 KB
/
onnx_modifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
# https://leimao.github.io/blog/ONNX-Python-API/
# https://leimao.github.io/blog/ONNX-IO-Stream/
# https://github.com/saurabh-shandilya/onnx-utils
# https://stackoverflow.com/questions/52402448/how-to-read-individual-layers-weight-bias-values-from-onnx-model
import os
import copy
import struct
import logging
import json
import numpy as np
import onnx
from onnx import numpy_helper
from utils import str2np, str2val
from utils import np2onnxdtype, str2onnxdtype
from utils import make_new_node, make_attr_changed_node, make_input
from utils import get_infered_shape
class onnxModifier:
def __init__(self, model_name, model_proto):
self.model_name = model_name
self.model_proto_backup = model_proto
self.reload()
@classmethod
def from_model_path(cls, model_path):
model_name = os.path.basename(model_path)
model_proto = onnx.load(model_path)
return cls(model_name, model_proto)
@classmethod
def from_name_json_stream(cls, name, stream):
from google.protobuf.json_format import Parse
logging.info(f"loading model from json {name} ...")
stream.seek(0)
onnx_json = json.load(stream)
onnx_str = json.dumps(onnx_json)
model_proto = Parse(onnx_str, onnx.ModelProto())
return cls(name, model_proto)
@classmethod
def from_name_protobuf_stream(cls, name, stream):
# https://leimao.github.io/blog/ONNX-IO-Stream/
logging.info("loading model...")
stream.seek(0)
model_proto = onnx.load_model(stream, "protobuf", load_external_data=False)
logging.info("load done!")
return cls(name, model_proto)
def reload(self):
self.model_proto = copy.deepcopy(self.model_proto_backup)
self.graph = self.model_proto.graph
self.initializer = self.model_proto.graph.initializer
self.need_topsort = False
self.gen_name2module_map()
def gen_name2module_map(self):
# node name => node
self.node_name2module = dict()
self.cst_node_outname2nodename = dict()
for i, node in enumerate(self.graph.node):
if node.name == '':
node.name = str(node.op_type) + str(i)
self.node_name2module[node.name] = node
if node.op_type == "Constant":
self.cst_node_outname2nodename[node.output[0]] = node.name
for inp in self.graph.input:
self.node_name2module[inp.name] = inp
self.graph_input_names = [inp.name for inp in self.graph.input]
for out in self.graph.output:
self.node_name2module["out_" + out.name] = out # add `out_` in case the output has the same name with the last node
self.graph_output_names = ["out_" + out.name for out in self.graph.output]
# print(self.node_name2module.keys())
# initializer name => initializer
self.initializer_name2module = dict()
for initializer in self.initializer:
self.initializer_name2module[initializer.name] = initializer
def remove_node_by_node_states(self, node_states):
# remove node from graph
for node_name, node_state in node_states.items():
if not (node_name in self.node_name2module.keys()):
# for custom added node here
continue
if node_state == 'Deleted':
if node_name in self.graph_output_names:
logging.debug('removing output {} ...'.format(node_name))
self.graph.output.remove(self.node_name2module[node_name])
self.graph_output_names = [n for n in self.graph_output_names if n != node_name]
self.node_name2module.pop(node_name, None)
elif not node_name in self.graph_input_names:
logging.debug('removing node {} ...'.format(node_name))
self.graph.node.remove(self.node_name2module[node_name])
self.node_name2module.pop(node_name, None)
remained_inputs = []
for remained_node in self.graph.node:
remained_inputs += remained_node.input
# remove node initializers (parameters), aka, keep and only keep the initializers of remained nodes
for init_name in self.initializer_name2module.keys():
if not init_name in remained_inputs:
self.initializer.remove(self.initializer_name2module[init_name])
# remove the (model) inputs related to deleted nodes
# https://github.com/ZhangGe6/onnx-modifier/issues/12
for input_name in self.graph_input_names:
if input_name not in remained_inputs or \
(input_name in node_states.keys() and node_states[input_name] == 'Deleted'):
self.graph.input.remove(self.node_name2module[input_name])
self.node_name2module.pop(input_name, None)
self.need_topsort = True
def change_node_io_name(self, node_renamed_io):
# format of node_renamed_io : {node_name : {src_io_name : dst_io_name}}
for node_name in node_renamed_io.keys():
if node_name not in self.node_name2module.keys():
# custom added nodes or custom added model outputs, or the deleted nodes
continue
renamed_ios = node_renamed_io[node_name]
for src_name, dst_name in renamed_ios.items():
node = self.node_name2module[node_name]
if node_name in self.graph_input_names:
node.name = dst_name
self.graph_input_names.remove(src_name)
self.graph_input_names.append(dst_name)
self.node_name2module[dst_name] = node
elif node_name in self.graph_output_names:
node.name = dst_name
self.graph_output_names.remove("out_" + src_name)
self.graph_output_names.append("out_" + dst_name)
self.node_name2module["out_" + dst_name] = node
else:
# print(node.input, node.output)
for i in range(len(node.input)):
if node.input[i] == src_name:
node.input[i] = dst_name
for i in range(len(node.output)):
if node.output[i] == src_name:
node.output[i] = dst_name
# rename the corresponding initializer and update initializer_name2module
if src_name in self.initializer_name2module.keys():
init = self.initializer_name2module[src_name]
init.name = dst_name
self.initializer_name2module[dst_name] = init
del self.initializer_name2module[src_name]
# else rename output of the corresponding constant node and update cst_node_outname2nodename
elif src_name in self.cst_node_outname2nodename.keys():
cont = self.node_name2module[self.cst_node_outname2nodename[src_name]]
cont.output[0] = dst_name
self.cst_node_outname2nodename[dst_name] = self.cst_node_outname2nodename[src_name]
del self.cst_node_outname2nodename[src_name]
def change_node_attr(self, node_changed_attr):
# we achieve it by deleting the original node and make a (copied) new node
for node_name in node_changed_attr.keys():
orig_node = self.node_name2module[node_name]
attr_changed_node = make_attr_changed_node(orig_node, node_changed_attr[node_name])
self.graph.node.remove(self.node_name2module[node_name])
self.graph.node.append(attr_changed_node)
# update the node_name2module
del self.node_name2module[node_name]
self.node_name2module[node_name] = attr_changed_node
self.need_topsort = True
def add_nodes(self, nodes_info, node_states):
for node_info in nodes_info.values():
if node_states[node_info['properties']['name']] == "Deleted":
continue
node = make_new_node(node_info)
self.graph.node.append(node)
# update the node_name2module
self.node_name2module[node.name] = node
self.need_topsort = True
def change_batch_size(self, rebatch_info):
if not rebatch_info: return
# https://github.com/onnx/onnx/issues/2182
rebatch_type = rebatch_info['type']
rebatch_value = rebatch_info['value']
if rebatch_type == 'fixed':
rebatch_value = int(rebatch_value)
for tensor in self.graph.input:
if type(rebatch_value) == str:
tensor.type.tensor_type.shape.dim[0].dim_param = rebatch_value
elif type(rebatch_value) == int:
tensor.type.tensor_type.shape.dim[0].dim_value = rebatch_value
else:
logging.warning('Unknown type {} for batch size. Fallback to dynamic batch size.'.format(type(rebatch_value)))
tensor.type.tensor_type.shape.dim[0].dim_param = str(rebatch_value)
self.shape_inference()
else: # dynamic batch size
# Change batch size in input, output and value_info
for tensor in list(self.graph.input) + list(self.graph.value_info) + list(self.graph.output):
tensor.type.tensor_type.shape.dim[0].dim_param = rebatch_value
# print(type(rebatch_value), self.graph.input[0].type.tensor_type.shape.dim[0].dim_value)
# print(type(rebatch_value), self.graph.input[0].type.tensor_type.shape.dim[0].dim_param)
# handle reshapes
for node in self.graph.node:
if node.op_type != 'Reshape':
continue
for init in self.graph.initializer:
# node.input[1] is expected to be a reshape
if init.name != node.input[1]:
continue
# Shape is stored as a list of ints
if len(init.int64_data) > 0:
# This overwrites bias nodes' reshape shape but should be fine
init.int64_data[0] = -1
# Shape is stored as bytes
elif len(init.raw_data) > 0:
shape = bytearray(init.raw_data)
struct.pack_into('q', shape, 0, -1)
init.raw_data = bytes(shape)
def replace_primitive_input(self, new_input):
self.graph.input.remove(self.node_name2module[new_input.name])
self.graph.input.append(new_input)
self.node_name2module[new_input.name] = new_input
def add_new_input(self, new_input):
self.graph_input_names.append(new_input.name)
self.graph.input.append(new_input)
self.node_name2module[new_input.name] = new_input
def edit_inputs(self, inputs, rebatch_info):
for input_info in inputs.values():
inp = make_input(input_info)
if inp.name in self.graph_input_names:
logging.debug(f"Replacing the input {inp.name}")
self.replace_primitive_input(inp)
else:
logging.debug(f"Adding new input {inp.name}")
self.add_new_input(inp)
if inputs:
self.shape_inference()
self.change_batch_size(rebatch_info)
def add_outputs(self, outputs):
# https://github.com/onnx/onnx/issues/3277#issuecomment-1050600445
output_names = outputs.values()
if len(output_names) == 0: return True
# sort nodes to get_infered_shape correctly
self.toposort()
inferred_value_info = get_infered_shape(self.model_proto)
inferred_name2value = {info.name : info for info in inferred_value_info}
for name in output_names:
if name in inferred_name2value.keys():
info = inferred_name2value[name]
self.graph.output.append(info)
self.graph_output_names.append("out_" + info.name)
self.node_name2module["out_" + info.name] = info
else:
logging.warning(f"{name} is not added successfully!")
def change_initializer(self, changed_initializer):
# print(changed_initializer)
for init_name, meta in changed_initializer.items():
# https://github.com/onnx/onnx/issues/2978
init_type, init_val_str = meta
if init_val_str == "": continue # in case we clear the input
# print(init_name, init_type, init_val)
init_val = str2np(init_val_str, init_type)
# print(init_val)
# for primary initilizers
if init_name in self.initializer_name2module.keys():
tensor = numpy_helper.from_array(init_val, init_name)
self.initializer_name2module[init_name].CopyFrom(tensor)
# for custom added initilizers
else:
# more details about why the .flatten() is needed can be found in https://github.com/ZhangGe6/onnx-modifier/issues/28
init_val_flat = init_val
if len(init_val.shape) > 1:
init_val_flat = init_val.flatten()
if len(init_val.shape) == 0:
init_val_flat = [init_val.item()]
initializer_tensor = onnx.helper.make_tensor(
name=init_name,
data_type=np2onnxdtype(init_val.dtype),
dims=init_val.shape,
vals=init_val_flat)
# print(initializer_tensor)
self.initializer.append(initializer_tensor)
self.initializer_name2module[init_name] = initializer_tensor
# remove constant node replaced by initializer for some kind of node
if init_name in self.cst_node_outname2nodename.keys():
cst_node_name = self.cst_node_outname2nodename[init_name]
self.graph.node.remove(self.node_name2module[cst_node_name])
del self.node_name2module[cst_node_name]
self.need_topsort = True
def shape_inference(self):
self.toposort()
inferred_shape_info = get_infered_shape(copy.deepcopy(self.model_proto))
orig_output_info = copy.deepcopy(self.graph.output)
orig_output_num = len(self.graph.output)
del self.graph.value_info[:]
del self.graph.output[:]
for info in inferred_shape_info:
if "out_" + info.name in self.graph_output_names:
self.graph.output.append(info)
else:
self.graph.value_info.append(info)
# recover the original ouptuts, to avoid output missing due to unperfect shape inference
# TODO: this workaround can cause output shape mismatch if users change the input size
if len(self.graph.output) < orig_output_num:
self.graph.output.extend(orig_output_info)
def toposort(self):
# inspired by graphsurgeon
# https://github1s.com/NVIDIA/TensorRT/blob/master/tools/onnx-graphsurgeon/onnx_graphsurgeon/ir/graph.py
def get_tensor2producer_map():
tensor2producer_map = dict()
for node in self.graph.node:
for output in node.output:
tensor2producer_map[output] = node
for inp in self.graph.input:
tensor2producer_map[inp.name] = None
return tensor2producer_map
def get_input_nodes_map():
input_nodes = dict()
for node in self.graph.node:
if node.name not in input_nodes.keys():
input_nodes[node.name] = []
for inp in node.input:
# weights are not in tensor2producer_map
if inp in tensor2producer_map.keys():
producer = tensor2producer_map[inp]
input_nodes[node.name].append(producer)
return input_nodes
def get_hierarchy_level(node):
if not node: return 0 # for input node
if node.name in node_name2hierarchy:
return node_name2hierarchy[node.name]
# The level of a node is the level of it's highest input + 1.
max_input_level = max([get_hierarchy_level(input_node) for input_node in input_nodes_map[node.name]] + [-1])
return max_input_level + 1
node_name2hierarchy = dict()
tensor2producer_map = get_tensor2producer_map()
input_nodes_map = get_input_nodes_map()
for node in self.graph.node:
node_name2hierarchy[node.name] = get_hierarchy_level(node)
# print(node_name2hierarchy)
sorted_node_names = [v[0] for v in sorted(node_name2hierarchy.items(), key=lambda x:x[1])]
sorted_nodes = []
for node_name in sorted_node_names:
sorted_nodes.append(copy.deepcopy(self.node_name2module[node_name]))
del self.graph.node[:]
# TODO: check: does self.node_name2module still work?
self.graph.node.extend(sorted_nodes)
def post_process(self, kwargs):
def get_tail_outputs():
def collect_backtrack(input):
if input not in input2nodes.keys(): # if the node has no child node
tail_outputs.add(input)
return
node = input2nodes[input]
if node in traversed_nodes: return # if the node has been traversed
traversed_nodes.append(node)
for node in input2nodes[input]:
for output in node.output:
collect_backtrack(output)
input2nodes = dict()
for node in self.graph.node:
for input in node.input:
if not (input in input2nodes.keys()):
input2nodes[input] = []
input2nodes[input].append(node)
tail_outputs = set()
traversed_nodes = []
for inp in self.graph.input:
collect_backtrack(inp.name)
# print(tail_outputs)
return tail_outputs
def remove_isolated_nodes():
def collect_reverse_backtrack(output):
if output not in output2node.keys(): return # if the node has no parent node
node = output2node[output]
if node in connected_nodes: return # if the node has been traversed
connected_nodes.append(node)
for input in node.input:
collect_reverse_backtrack(input)
output2node = dict()
for node in self.graph.node:
for output in node.output:
output2node[output] = node
connected_nodes = []
model_tail_outputs = get_tail_outputs()
for output in model_tail_outputs:
collect_reverse_backtrack(output)
graph_connected_nodes = []
graph_connected_initializers = []
# NOTE(yancong): The initializer could be shared by multiple nodes. We should check
# whether the initializer has been added to the initializer list before adding it.
visited_initializer_names = set()
for node in self.graph.node:
if node in connected_nodes:
graph_connected_nodes.append(copy.deepcopy(self.node_name2module[node.name]))
for inp in node.input:
if inp in self.initializer_name2module.keys() and inp not in visited_initializer_names:
graph_connected_initializers.append(copy.deepcopy(self.initializer_name2module[inp]))
visited_initializer_names.add(inp)
del self.graph.node[:]
del self.initializer[:]
self.graph.node.extend(graph_connected_nodes)
self.initializer.extend(graph_connected_initializers)
self.need_topsort = True
useShapeInference = kwargs.pop("shapeInf", False)
useCleanUp = kwargs.pop("cleanUp", False)
if useShapeInference:
self.shape_inference()
if useCleanUp:
logging.warning("[EXPERIMENTAL] Remove idle nodes...")
remove_isolated_nodes()
if self.need_topsort:
self.toposort()
def modify(self, modify_info):
'''
The order of editing functions should be considered carefully
'''
logging.debug("=== modify_info ===\n", modify_info)
self.add_nodes(modify_info['added_node_info'], modify_info['node_states'])
self.change_initializer(modify_info['changed_initializer'])
self.change_node_io_name(modify_info['node_renamed_io'])
self.edit_inputs(modify_info['added_inputs'], modify_info['rebatch_info'])
self.remove_node_by_node_states(modify_info['node_states'])
self.add_outputs(modify_info['added_outputs'])
self.change_node_attr(modify_info['node_changed_attr'])
self.post_process(modify_info['postprocess_args'])
def check_and_save_model(self, save_dir='./modified_onnx'):
logging.info("saving model...")
# onnx.checker.check_model(self.model_proto)
save_dir = os.path.abspath(save_dir)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
save_path = os.path.join(save_dir, 'modified_' + self.model_name)
if save_path:
onnx.save(self.model_proto, save_path)
logging.info("model saved in {} !".format(save_dir))
return save_path
else:
return "NULL"
def inference(self, input_shape=[1, 3, 224, 224], x=None, output_names=None):
import onnxruntime as rt
model_proto_bytes = onnx._serialize(self.model_proto)
inference_session = rt.InferenceSession(model_proto_bytes)
if not x:
np.random.seed(0)
x = np.random.randn(*input_shape).astype(np.float32)
if not output_names:
output_name = self.graph.node[-1].output[0]
# output_value_info = onnx.helper.make_tensor_value_info(output_name, onnx.TensorProto.INT64, shape=[])
output_value_info = onnx.helper.make_tensor_value_info(output_name, onnx.TensorProto.FLOAT, shape=[])
self.graph.output.append(output_value_info)
output_names = [inference_session.get_outputs()[0].name]
input_name = inference_session.get_inputs()[0].name
outs = inference_session.run(output_names, {input_name: x})
return outs