-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
584 lines (490 loc) · 20.6 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
from dataclasses import dataclass, field
import json
import math
import logging
import os
from typing import Dict, Optional, List
import torch
from torch.utils.data import Dataset, DataLoader
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
import transformers
from transformers import GPTQConfig, deepspeed
from transformers.trainer_pt_utils import LabelSmoother
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from accelerate.utils import DistributedType
from transformers import BitsAndBytesConfig
from torch.optim import AdamW
# from torch.optim.lr_scheduler import get_scheduler
from transformers import get_linear_schedule_with_warmup
import torch.distributed as dist
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="meta-llama/Meta-Llama-3-8B-Instruct")
@dataclass
class DataArguments:
data_path: str = field(
default=None, metadata={"help": "Path to the training data."}
)
eval_data_path: str = field(
default=None, metadata={"help": "Path to the evaluation data."}
)
lazy_preprocess: bool = False
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=8192,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
use_lora: bool = False
@dataclass
class LoraArguments:
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
# ['gate_proj', 'o_proj', 'k_proj', 'q_proj', 'up_proj', 'down_proj', 'v_proj']
lora_target_modules: List[str] = field(
default_factory=lambda: ['o_proj', 'k_proj', 'q_proj', 'v_proj']
)
# lora_target_modules = None
lora_weight_path: str = ""
lora_bias: str = "none"
q_lora: bool = False
load_in_4bit: bool = False
load_in_8bit: bool = False
def maybe_zero_3(param):
if hasattr(param, "ds_id"):
assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
if bias == "none":
to_return = {k: t for k, t in named_params if "lora_" in k}
elif bias == "all":
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
maybe_lora_bias = {}
lora_bias_names = set()
for k, t in named_params:
if "lora_" in k:
to_return[k] = t
bias_name = k.split("lora_")[0] + "bias"
lora_bias_names.add(bias_name)
elif "bias" in k:
maybe_lora_bias[k] = t
for k, t in maybe_lora_bias:
if bias_name in lora_bias_names:
to_return[bias_name] = t
else:
raise NotImplementedError
to_return = {k: maybe_zero_3(v) for k, v in to_return.items()}
return to_return
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
def safe_save_model_for_hf_trainer(model, tokenizer, output_dir: str, bias="none"):
"""Collects the state dict and dump to disk."""
# Unwrap the model from DDP if necessary
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
model_to_save = model.module
else:
model_to_save = model
# Handle DeepSpeed ZeRO stage 3 saving if enabled
if deepspeed.is_deepspeed_zero3_enabled():
# DeepSpeed engine stores the model in engine.module
state_dict = model_to_save._zero3_consolidated_16bit_state_dict()
else:
if hasattr(model_to_save, 'peft_config'):
state_dict = get_peft_state_maybe_zero_3(
model_to_save.named_parameters(), bias
)
else:
state_dict = model_to_save.state_dict()
if local_rank == 0:
os.makedirs(output_dir, exist_ok=True)
model_to_save.save_pretrained(output_dir, state_dict=state_dict)
tokenizer.save_pretrained(output_dir)
def preprocess(
sources,
tokenizer: transformers.PreTrainedTokenizer,
max_len: int,
system_message: str = "You are a pirate chatbot who always responds in pirate speak!"
) -> Dict:
# im_start = tokenizer.im_start_id
# im_end = tokenizer.im_end_id
begin_of_text_id = tokenizer.get_vocab()["<|begin_of_text|>"]
start_header_id = tokenizer.get_vocab()["<|start_header_id|>"]
end_header_id = tokenizer.get_vocab()["<|end_header_id|>"]
eot_id = tokenizer.get_vocab()["<|eot_id|>"]
nl_tokens = tokenizer('\n').input_ids
_system = tokenizer('system').input_ids
_user = tokenizer('user').input_ids
_assistant = tokenizer('assistant').input_ids
# Apply prompt templates
input_ids, targets = [], []
for i, source in enumerate(sources):
input_id, target = [], []
system = [begin_of_text_id] + [start_header_id] + _system + [end_header_id] + nl_tokens + tokenizer(system_message).input_ids + [eot_id]
input_id += system
target += [IGNORE_TOKEN_ID] * len(input_id)
assert len(input_id) == len(target)
for j, sentence in enumerate(source):
role = sentence["from"]
value = sentence["value"]
if role == 'user':
_input_id = [start_header_id] + _user + [end_header_id] + nl_tokens + tokenizer(value).input_ids + [
eot_id]
_target = [IGNORE_TOKEN_ID] * len(_input_id)
elif role == 'assistant':
_input_id = [start_header_id] + _assistant + [end_header_id] + nl_tokens + tokenizer(value).input_ids + [
eot_id]
_target = [IGNORE_TOKEN_ID] + [IGNORE_TOKEN_ID] * len(_assistant) + \
[IGNORE_TOKEN_ID] + [IGNORE_TOKEN_ID] * len(nl_tokens) + tokenizer(value).input_ids + [eot_id]
else:
raise NotImplementedError
input_id += _input_id
target += _target
# print(input_id)
# print(target)
# print(tokenizer.decode(input_id))
# print(len(input_id), len(target))
assert len(input_id) == len(target)
input_id += [tokenizer.pad_token_id] * (max_len - len(input_id))
target += [IGNORE_TOKEN_ID] * (max_len - len(target))
input_ids.append(input_id[:max_len])
targets.append(target[:max_len])
input_ids = torch.tensor(input_ids, dtype=torch.long)
targets = torch.tensor(targets, dtype=torch.long)
return dict(
input_ids=input_ids,
labels=targets,
attention_mask=input_ids.ne(tokenizer.pad_token_id),
)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int):
super(SupervisedDataset, self).__init__()
rank0_print("Formatting inputs...")
sources = [example["conversations"] for example in raw_data]
data_dict = preprocess(sources, tokenizer, max_len)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
self.attention_mask = data_dict["attention_mask"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(
input_ids=self.input_ids[i],
labels=self.labels[i],
attention_mask=self.attention_mask[i],
)
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int):
super(LazySupervisedDataset, self).__init__()
self.tokenizer = tokenizer
self.max_len = max_len
rank0_print("Formatting inputs...Skip in lazy mode")
self.tokenizer = tokenizer
self.raw_data = raw_data
self.cached_data_dict = {}
def __len__(self):
return len(self.raw_data)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
if i in self.cached_data_dict:
return self.cached_data_dict[i]
ret = preprocess([self.raw_data[i]["conversations"]], self.tokenizer, self.max_len)
ret = dict(
input_ids=ret["input_ids"][0],
labels=ret["labels"][0],
attention_mask=ret["attention_mask"][0],
)
self.cached_data_dict[i] = ret
return ret
def make_supervised_data_module(
tokenizer: transformers.PreTrainedTokenizer, data_args, max_len,
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
dataset_cls = (
LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset
)
rank0_print("Loading data...")
train_json = json.load(open(data_args.data_path, "r"))
train_dataset = dataset_cls(train_json, tokenizer=tokenizer, max_len=max_len)
if data_args.eval_data_path:
eval_json = json.load(open(data_args.eval_data_path, "r"))
eval_dataset = dataset_cls(eval_json, tokenizer=tokenizer, max_len=max_len)
else:
eval_dataset = None
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset)
def get_quantization_config(model_args):
if model_args.load_in_4bit:
compute_dtype = torch.float16
# if model_args.torch_dtype not in {"auto", None}:
# compute_dtype = getattr(torch, model_args.torch_dtype)
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=False,
)
elif model_args.load_in_8bit:
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
)
else:
quantization_config = None
return quantization_config
def train():
global local_rank
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments, LoraArguments)
)
(
model_args,
data_args,
training_args,
lora_args,
) = parser.parse_args_into_dataclasses()
# This serves for single-gpu qlora.
if getattr(training_args, 'deepspeed', None) and int(os.environ.get("WORLD_SIZE", 1)) == 1:
training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED
local_rank = training_args.local_rank
device_map = None
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if lora_args.q_lora:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else "auto"
if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled():
logging.warning(
"FSDP or ZeRO3 are incompatible with QLoRA."
)
is_chat_model = 'instruct' in model_args.model_name_or_path.lower()
if (
training_args.use_lora
and not lora_args.q_lora
and deepspeed.is_deepspeed_zero3_enabled()
and not is_chat_model
):
raise RuntimeError("ZeRO3 is incompatible with LoRA when finetuning on base model.")
model_load_kwargs = {
'low_cpu_mem_usage': not deepspeed.is_deepspeed_zero3_enabled(),
}
# Set RoPE scaling factor
config = transformers.AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
trust_remote_code=True,
)
config.use_cache = False
# Load model and tokenizer
quantization_config = get_quantization_config(lora_args)
print("quantization_config:", quantization_config)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=training_args.cache_dir,
device_map=device_map,
trust_remote_code=True,
token='YOUR_HUGGINGFACE_TOKEN',
quantization_config=quantization_config if lora_args.q_lora else None,
**model_load_kwargs,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
trust_remote_code=True,
token='YOUR_HUGGINGFACE_TOKEN',
)
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
if training_args.use_lora:
if is_chat_model:
modules_to_save = None
else:
modules_to_save = ["wte", "lm_head"]
def find_all_linear_names(args, model):
import bitsandbytes as bnb
cls = bnb.nn.Linear4bit if args.load_in_4bit == 4 else (
bnb.nn.Linear8bitLt if args.load_in_8bit == 8 else torch.nn.Linear)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
if lora_args.lora_target_modules is None:
lora_args.lora_target_modules = find_all_linear_names(lora_args, model)
print(lora_args.lora_target_modules)
print(modules_to_save)
lora_config = LoraConfig(
r=lora_args.lora_r,
lora_alpha=lora_args.lora_alpha,
target_modules=lora_args.lora_target_modules,
lora_dropout=lora_args.lora_dropout,
bias=lora_args.lora_bias,
task_type="CAUSAL_LM",
modules_to_save=modules_to_save # This argument serves for adding new tokens.
)
if lora_args.q_lora:
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=training_args.gradient_checkpointing
)
model = get_peft_model(model, lora_config)
# Print peft trainable params
model.print_trainable_parameters()
if training_args.gradient_checkpointing:
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
# Load data
data_module = make_supervised_data_module(
tokenizer=tokenizer, data_args=data_args, max_len=training_args.model_max_length
)
train_dataset = data_module['train_dataset']
eval_dataset = data_module['eval_dataset']
# Set up DataLoaders
train_sampler = None
if training_args.local_rank != -1:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset,
batch_size=training_args.per_device_train_batch_size,
sampler=train_sampler,
shuffle=(train_sampler is None),
)
if eval_dataset is not None:
eval_sampler = None
if training_args.local_rank != -1:
eval_sampler = torch.utils.data.distributed.DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(
eval_dataset,
batch_size=training_args.per_device_eval_batch_size,
sampler=eval_sampler,
shuffle=False,
)
else:
eval_dataloader = None
# Prepare optimizer and scheduler
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if p.requires_grad],
"weight_decay": training_args.weight_decay,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=training_args.learning_rate)
# Prepare scheduler
total_steps = (
len(train_dataloader) // training_args.gradient_accumulation_steps * training_args.num_train_epochs
)
warmup_steps = training_args.get_warmup_steps(total_steps)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps
)
# Prepare model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Mixed precision
if training_args.fp16:
scaler = torch.cuda.amp.GradScaler()
else:
scaler = None
# Distributed training
if training_args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[training_args.local_rank], output_device=training_args.local_rank
)
# Training loop
global_step = 0
# for epoch in range(int(training_args.num_train_epochs)):
# Inside the training loop
for epoch in range(int(training_args.num_train_epochs)):
if train_sampler is not None:
train_sampler.set_epoch(epoch)
model.train()
running_loss = 0.0
for step, batch in enumerate(train_dataloader):
batch = {k: v.to(device) for k, v in batch.items()}
# with torch.cuda.amp.autocast(enabled=training_args.fp16):
with torch.amp.autocast('cuda', enabled=training_args.fp16):
outputs = model(**batch)
loss = outputs.loss
loss = loss / training_args.gradient_accumulation_steps
if scaler is not None:
scaler.scale(loss).backward()
else:
loss.backward()
# Compute gradient norm
total_norm = 0.0
parameters = [p for p in model.parameters() if p.grad is not None]
if training_args.max_grad_norm is not None and training_args.max_grad_norm > 0:
# Unscaling gradients before computing the norm if using mixed precision
if scaler is not None:
scaler.unscale_(optimizer)
total_norm = torch.norm(
torch.stack([torch.norm(p.grad.detach(), 2) for p in parameters]), 2
).item()
if (step + 1) % training_args.gradient_accumulation_steps == 0:
if training_args.max_grad_norm is not None and training_args.max_grad_norm > 0:
# Gradient clipping
if scaler is not None:
torch.nn.utils.clip_grad_norm_(parameters, training_args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(parameters, training_args.max_grad_norm)
if scaler is not None:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
global_step += 1
# Get current learning rate
current_lr = scheduler.get_last_lr()[0]
# Print learning rate and gradient norm
# if training_args.logging_steps > 0 and global_step % training_args.logging_steps == 0:
rank0_print(
f"Epoch {epoch+1}, Global Step {global_step}, Loss: {loss.item() * training_args.gradient_accumulation_steps:.4f}, "
f"LR: {current_lr:.8f}, Grad Norm: {total_norm:.4f}"
)
if local_rank == 0:
if training_args.save_steps > 0 and global_step % training_args.save_steps == 0 and local_rank == 0:
# Save the model
output_dir = os.path.join(training_args.output_dir, f"checkpoint-{global_step}")
safe_save_model_for_hf_trainer(model, tokenizer, output_dir, bias=lora_args.lora_bias)
# Evaluation at the end of each epoch
if eval_dataloader is not None:
model.eval()
eval_loss = 0.0
eval_steps = 0
for batch in eval_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=training_args.fp16):
outputs = model(**batch)
loss = outputs.loss
eval_loss += loss.item()
eval_steps += 1
eval_loss = eval_loss / eval_steps
rank0_print(f"Epoch {epoch+1}, Evaluation Loss: {eval_loss}")
# Save the final model
if local_rank == 0:
safe_save_model_for_hf_trainer(model, tokenizer, training_args.output_dir, bias=lora_args.lora_bias)
if __name__ == "__main__":
train()